上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1325-1333.doi: 10.16183/j.cnki.jsjtu.2021.188
收稿日期:
2021-06-03
出版日期:
2022-10-28
发布日期:
2022-11-03
通讯作者:
谭海云
E-mail:610800860@qq.com.
作者简介:
吴 靖(1977-),男,浙江省衢州市人,高级工程师,从事电力系统自动化的研究.
基金资助:
WU Jing, TAN Haiyun(), SHI Yuchao, HOU Weihong, TANG Ming
Received:
2021-06-03
Online:
2022-10-28
Published:
2022-11-03
Contact:
TAN Haiyun
E-mail:610800860@qq.com.
摘要:
柔性全固态超级电容器(FASS)是可穿戴电子设备以及电力设备的能源供应,石墨烯纳米片具有独特的二维结构,较强的机械性能和优异的导电性,在纸片状柔性电极中应用广泛.基于简单石墨烯纳米片的FASS的双层电容性能的基本特征限制了其性能的提高和实际应用.研究了一种基于超大型石墨烯纳米片和超薄氮化硼(BN)纳米片的FASS,通过真空辅助过滤组装独立式超大型石墨烯纳米片/BN纳米片复合纸电极.新型超大型石墨烯纳米片/ BN纳米片纸的特有结构可以有效整合假电容BN纳米片和导电石墨烯的优点,从而在FASS中表现出出色的电化学性能.5000 次充放电后,FASS的最高面积比电容达到325.4 mF/cm2,并具有约86.2%的高容量保持率,且在85.7 W/kg的功率密度下具有22.8 W·h/kg (1 W·h=3.6 kJ)的高能量密度.
中图分类号:
吴靖, 谭海云, 史宇超, 侯伟宏, 汤明. 基于石墨烯和氮化硼的高性能电容器[J]. 上海交通大学学报, 2022, 56(10): 1325-1333.
WU Jing, TAN Haiyun, SHI Yuchao, HOU Weihong, TANG Ming. High Performance Capacitors Based on Graphene and Boron Nitride[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1325-1333.
[1] | CHEN F H, WAN P B, XU H J, et al. Flexible transparent supercapacitors based on hierarchical nanocomposite films[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17865-17871. |
[2] | MORIARTY P, HONNERY D. Global renewable energy resources and use in 2050[M]//Managing global warming. Amsterdam: Elsevier, 2019: 221-235. |
[3] |
KHARE V. Prediction, investigation, and assessment of novel tidal-solar hybrid renewable energy system in India by different techniques[J]. International Journal of Sustainable Energy, 2019, 38(5): 447-468.
doi: 10.1080/14786451.2018.1529034 URL |
[4] |
CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489.
doi: 10.1093/nsr/nwx009 URL |
[5] |
MENG Q F, CAI K F, CHEN Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.
doi: 10.1016/j.nanoen.2017.04.040 URL |
[6] |
LI X, TANG Y, SONG J H, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244.
doi: 10.1016/j.carbon.2017.11.099 URL |
[7] |
KSHETRI T, TRAN D T, NGUYEN D C, et al. Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor[J]. Chemical Engineering Journal, 2020, 380: 122543.
doi: 10.1016/j.cej.2019.122543 URL |
[8] |
PITKÄNEN O, JÄRVINEN T, CHENG H, et al. On-chip integrated vertically aligned carbon nanotube based super-and pseudocapacitors[J]. Scientific Reports, 2017, 7: 16594.
doi: 10.1038/s41598-017-16604-x URL |
[9] |
GUAN X B, ZHAO L P, ZHANG P, et al. Self-supporting electrode of high conductive PEDOT: PSS/CNTs coaxial nanocables wrapped by MnO2 nanosheets[J]. ChemistrySelect, 2019, 4(7): 2009-2017.
doi: 10.1002/slct.201900140 URL |
[10] |
YI F, REN H Y, SHAN J Y, et al. Wearable energy sources based on 2D materials[J]. Chemical Society Reviews, 2018, 47(9): 3152-3188.
doi: 10.1039/c7cs00849j pmid: 29412208 |
[11] |
WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
doi: 10.1039/c7cs00205j pmid: 28868557 |
[12] |
XIA H C, XU Q, ZHANG J N. Recent progress on two-dimensional nanoflake ensembles for energy storage applications[J]. Nano-Micro Letters, 2018, 10(4): 1-30.
doi: 10.1007/s40820-017-0154-4 URL |
[13] |
LIU L L, NIU Z Q, CHEN J. Design and integration of flexible planar micro-supercapacitors[J]. Nano Research, 2017, 10(5): 1524-1544.
doi: 10.1007/s12274-017-1448-z URL |
[14] |
DA Y M, LIU J X, ZHOU L, et al. Engineering 2D architectures toward high-performance micro-supercapacitors[J]. Advanced Materials, 2019, 31(1): 1802793.
doi: 10.1002/adma.201802793 URL |
[15] |
SOSTAK P, PADOVAN C. Neurological complications after solid organ and bone marrow transplantation[J]. Aktuelle Neurologie, 2002, 29(6): 282-287.
doi: 10.1055/s-2002-32914 URL |
[16] | SHI X Y, PEI S F, ZHOU F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility[J]. Energy & Environmental Science, 2019, 12(5): 1534-1541. |
[17] |
YOUSEFI N, LU X, ELIMELECH M, et al. Environmental performance of graphene-based 3D macrostructures[J]. Nature Nanotechnology, 2019, 14(2): 107-119.
doi: 10.1038/s41565-018-0325-6 pmid: 30617310 |
[18] |
ZHU Y W, JI H X, CHENG H M, et al. Mass production and industrial applications of graphene materials[J]. National Science Review, 2017, 5(1): 90-101.
doi: 10.1093/nsr/nwx055 URL |
[19] |
LEMINE A S, ZAGHO M M, ALTAHTAMOUNI T M, et al. Graphene a promising electrode material for supercapacitors—A review[J]. International Journal of Energy Research, 2018, 42(14): 4284-4300.
doi: 10.1002/er.4170 URL |
[20] |
LIU X X, CHAO D L, SU D P, et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage[J]. Nano Energy, 2017, 37: 108-117.
doi: 10.1016/j.nanoen.2017.04.051 URL |
[21] |
LI P P, JIN Z Y, PENG L L, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels[J]. Advanced Materials, 2018, 30(18): 1800124.
doi: 10.1002/adma.201800124 URL |
[22] |
LI P W, TAO C G, WANG B Y, et al. Preparation of graphene oxide-based ink for inkjet printing[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(1): 713-718.
doi: 10.1166/jnn.2018.13942 pmid: 29768899 |
[23] |
YANG Y C, HOU H S, ZOU G Q, et al. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2018, 11(1): 16-33.
doi: 10.1039/c8nr08227h pmid: 30525147 |
[24] |
BELLANI S, PETRONI E, DEL RIO CASTILLO A E, et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors[J]. Advanced Functional Materials, 2019, 29(14): 1807659.
doi: 10.1002/adfm.201807659 URL |
[25] |
LI J T, SOLLAMI DELEKTA S, ZHANG P P, et al. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing[J]. ACS Nano, 2017, 11(8): 8249-8256.
doi: 10.1021/acsnano.7b03354 pmid: 28682595 |
[26] |
XUE Q, SUN J F, HUANG Y, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017, 13(45): 1701827.
doi: 10.1002/smll.201701827 URL |
[27] |
ZHANG L, DEARMOND D, ALVAREZ N T, et al. Flexible micro-supercapacitor based on graphene with 3D structure[J]. Small, 2017, 13(10): 1603114.
doi: 10.1002/smll.201603114 URL |
[28] |
LIU N S, GAO Y H. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture[J]. Small, 2017, 13(45): 1701989.
doi: 10.1002/smll.201701989 URL |
[29] |
ZHOU F, HUANG H B, XIAO C H, et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors[J]. Journal of the American Chemical Society, 2018, 140(26): 8198-8205.
doi: 10.1021/jacs.8b03235 pmid: 29893575 |
[30] |
SHAO Y L, LI J M, LI Y G, et al. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films[J]. Mater Horiz, 2017, 4(6): 1145-1150.
doi: 10.1039/C7MH00441A URL |
[31] |
LIU J H, LIU X W. Two-dimensional nanoarchitectures for lithium storage[J]. Advanced Materials, 2012, 24(30): 4097-4111.
doi: 10.1002/adma.201104993 URL |
[1] | 尹念,张执南. 石墨烯台阶处摩擦特性的分子动力学模拟[J]. 上海交通大学学报(自然版), 2018, 52(5): 620-623. |
[2] | 唐旻,吴林晟,李晓春,毛军发. 集成电路碳纳米管互连建模与特性研究[J]. 上海交通大学学报(自然版), 2018, 52(10): 1135-1141. |
[3] | 翟茜茜,胡国新,唐波. 石墨烯杂化钛酸管复合光催化剂的制备与表征[J]. 上海交通大学学报(自然版), 2013, 47(05): 811-816. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||