上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (11): 1547-1553.doi: 10.16183/j.cnki.jsjtu.2021.308
收稿日期:
2021-08-18
出版日期:
2022-11-28
发布日期:
2022-12-02
作者简介:
刘维红(1980-),男,陕西省渭南市人,副教授,现主要从事微波毫米波器件及系统集成等研究. E-mail:基金资助:
Received:
2021-08-18
Online:
2022-11-28
Published:
2022-12-02
摘要:
液晶高分子聚合物(LCP)以其优异的微波毫米波特性,被广泛应用于高频多层电路板.在多层电路板结构中,为了实现不同层电子器件以及传输线结构的高效互联,设计电学特性优异的过孔互联结构显得尤为重要.近年来,随着多层电路板使用频率的不断升高,过孔互联结构的不连续性问题愈发凸显,因此对其进行快速、准确的电磁建模,可以大大提高微波毫米电路的设计效率.基于4层LCP电路板,针对接地共面波导-带状线-接地共面波导(GCPW-SL-GCPW)结构,提出一种高效、快速的多层电路过孔建模方法.通过对多层结构进行分段建模,在寄生参数提取过程中引入快速收敛算法,建立过孔的集总参数等效电路结构;基于微波网络级联法,完成GCPW-SL-GCPW结构等效电路模型的快速构建.与三维高频电磁软件(HFSS)全波仿真结果进行对比,发现该建模方法过程简单、求解速度快.利用LCP多层工艺,制备了GCPW-SL-GCPW电路结构,测试结果表明,在10 MHz~40 GHz的宽频范围内,测试结果和等效电路分析结果具有高度一致性,验证了该过孔互联建模方法的有效性.
中图分类号:
刘维红, 刘烨. 多层LCP电路板过孔互联电路模型快速构建[J]. 上海交通大学学报, 2022, 56(11): 1547-1553.
LIU Weihong, LIU Ye. Fast Construction of a Circuit Model for Via-Hole Transition Based on Liquid Crystal Polymer Multilayer Substrate[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1547-1553.
[1] |
CHEN H F, LI Q, TSANG L, et al. Analysis of a large number of vias and differential signaling in multilayered structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3): 818-829.
doi: 10.1109/TMTT.2003.808616 URL |
[2] |
JI Y, BAI Y, LIU X B, et al. Progress of liquid crystal polyester (LCP) for 5G application[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(4): 160-174.
doi: 10.1016/j.aiepr.2020.10.005 URL |
[3] |
JILANI S F, MUNOZ M O, ABBASI Q H, et al. Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 84-88.
doi: 10.1109/LAWP.2018.2881303 URL |
[4] | GAO D, YANG B, DUAN X D, et al. Research on the influence of vias on signal transmission in multi-layer PCB[C]∥2017 13th IEEE International Conference on Electronic Measurement & Instruments. Yang-zhou, China: IEEE, 2017: 406-409. |
[5] |
QIAN L B, XIA Y S, HE X T, et al. Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(8): 1336-1343.
doi: 10.1109/TCPMT.2018.2854829 URL |
[6] |
DE PAULIS F, ZHANG Y J, FAN J. Signal/power integrity analysis for multilayer printed circuit boards using cascaded S-parameters[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(4): 1008-1018.
doi: 10.1109/TEMC.2010.2072784 URL |
[7] | LIU J, ZHANG M, HU G. Analysis of power supply and signal integrity of high speed PCB board[C]∥2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference. Chongqing, China: IEEE, 2019: 412-416. |
[8] | CHAN C K, WU T M, WU M L, et al. Power distribution network modeling and design of re-distribution layer in DDR application[C]∥2020 IEEE 24th Workshop on Signal and Power Integrity. Cologne, Germany: IEEE, 2020: 1-4. |
[9] |
MD JIZAT N, YUSOFF Z, MOHD MARZUKI A S, et al. Insertion loss and phase compensation using a circular slot via-hole in a compact 5G millimeter wave (mmWave) butler matrix at 28 GHz[J]. Sensors (Basel, Switzerland), 2022, 22(5): 1850.
doi: 10.3390/s22051850 URL |
[10] |
MAEDA S, KASHIWA T, FUKAI I. Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(12): 2154-2159.
doi: 10.1109/22.106558 URL |
[11] |
TIAN X X, REN L H, ZHANG Y J, et al. Efficient analysis of compact vias in an arbitrarily shaped plate pair by hybrid boundary-integral and finite-element method[J]. IEEE Access, 2019, 7: 59394-59402.
doi: 10.1109/ACCESS.2019.2913048 URL |
[12] |
JIN S, LIU D Z, CHEN B C, et al. Analytical equivalent circuit modeling for BGA in high-speed package[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 68-76.
doi: 10.1109/TEMC.2017.2726560 URL |
[13] |
ABDUL-GAFFOOR M R, SMITH H K, KISHK A A, et al. Simple and efficient full-wave modeling of electromagnetic coupling in realistic RF multilayer PCB layouts[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(6): 1445-1457.
doi: 10.1109/TMTT.2002.1006405 URL |
[14] |
HUANG C C, LAI K L, TSANG L, et al. Transmission and scattering on interconnects with via structures[J]. Microwave and Optical Technology Letters, 2005, 46(5): 446-452.
doi: 10.1002/mop.21013 URL |
[15] |
ONG C J, MILLER D, TSANG L, et al. Application of the Foldy-Lax multiple scattering method to the analysis of vias in ball grid arrays and interior layers of printed circuit boards[J]. Microwave and Optical Technology Letters, 2007, 49(1): 225-231.
doi: 10.1002/mop.22091 URL |
[16] | SELLI G, SCHUSTER C, KWARK Y. Model-to-hardware correlation of physics based via models with the parallel plate impedance included[C]∥2006 IEEE International Symposium on Electromagnetic Compatibility. Portland, OR, USA: IEEE, 2006: 781-785. |
[17] |
RIMOLO-DONADIO R, GU X X, KWARK Y H, et al. Physics-based via and trace models for efficient link simulation on multilayer structures up to 40 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(8): 2072-2083.
doi: 10.1109/TMTT.2009.2025470 URL |
[18] |
ZHANG Y J, FAN J, SELLI G, et al. Analytical evaluation of via-plate capacitance for multilayer printed circuit boards and packages[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(9): 2118-2128.
doi: 10.1109/TMTT.2008.2002237 URL |
[19] | 王云鹏. 高速PCB信号和电源完整性问题的建模方法研究[D]. 北京: 北京邮电大学, 2021. |
WANG Yunpeng. Research of modeling method for signal and power integrity of high speed PCB[D]. Beijing: Beijing University of Posts and Telecommunications, 2021. | |
[20] |
XU H, JACKSON D R, WILLIAMS J T. Comparison of models for the probe inductance for a parallel-plate waveguide and a microstrip patch[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(10): 3229-3235.
doi: 10.1109/TAP.2005.856306 URL |
[21] |
GAO S P, DE PAULIS F, LIU E X, et al. Fast-convergent expression for the barrel-plate capacitance in the physics-based via circuit model[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(5): 368-370.
doi: 10.1109/LMWC.2018.2812639 URL |
[22] | 许晓飞. 高速高密度电路互连结构的传输特性研究[D]. 北京: 北京交通大学, 2020. |
XU Xiaofei. Research on interconnection structures transmission characteristics in high speed and high density circuits[D]. Beijing: Beijing Jiaotong University, 2020. |
[1] | 王文, 刘芳, 尤明懿, 孟光. 板级球栅阵列无铅焊点随机振动寿命分析[J]. 上海交通大学学报(自然版), 2011, 45(09): 1362-1367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||