上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (8): 1078-1088.doi: 10.16183/j.cnki.jsjtu.2021.113
倪扬帆1,2, 杨媛媛2, 谢哲1,2, 郑德重1,2, 王卫东3()
收稿日期:
2021-04-14
出版日期:
2022-08-28
发布日期:
2022-08-26
通讯作者:
王卫东
E-mail:wangwd301@126.com
作者简介:
倪扬帆(1993- ),男,江苏省无锡市人,博士生,主要研究方向为深度学习在医学影像方面的应用.
基金资助:
NI Yangfan1,2, YANG Yuanyuan2, XIE Zhe1,2, ZHENG Dezhong1,2, WANG Weidong3()
Received:
2021-04-14
Online:
2022-08-28
Published:
2022-08-26
Contact:
WANG Weidong
E-mail:wangwd301@126.com
摘要:
对肺结节的形状特征、边缘特征和内部特征进行准确分类,能够辅助影像科医生的日常诊断工作,提高影像报告的书写效率.针对这一问题,提出一种基于长短时记忆(LSTM)结构与注意力结构的多任务分类模型.该模型通过注意力机制融合各个任务间的共享特征,提高当前任务的特征抽取效果.LSTM结构分类器能够有效地筛选任务间的共享特征,提高模型的信息传递效率.实验表明,相较于传统多任务结构,所提模型在公开数据集LIDC-IDRI上能够取得更好的多特征分类效果,辅助医生快捷地获取肺结节特征信息.
中图分类号:
倪扬帆, 杨媛媛, 谢哲, 郑德重, 王卫东. 基于LSTM与注意力结构的肺结节多特征抽取方法[J]. 上海交通大学学报, 2022, 56(8): 1078-1088.
NI Yangfan, YANG Yuanyuan, XIE Zhe, ZHENG Dezhong, WANG Weidong. Multi-Feature Extraction of Pulmonary Nodules Based on LSTM and Attention Structure[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1078-1088.
表1
选取的特征及其等级、描述与分布情况
语义特征 | 描述 | 分级 | 数量 |
---|---|---|---|
恶性风险 | 结节的恶性概率 | 1.可能性极低(0) 2.可能性较低(0) 3.不确定(0) 4.可能性较高(1) 5.可能性极高(1) | (0) 1002 (1) 559 |
形状 | 结节的三维圆度 | 1.索条型(2) 2. -(2) 3.椭球形(1) 4. -(1) 5.球形(0) | (0) 357 (1) 541 (2) 663 |
边缘 | 结节边缘是否清晰 | 1.边缘模糊(0) 2. -(0) 3. -(0) 4.边缘可分(1) 5.边缘十分清晰(1) | (0) 599 (1) 962 |
毛刺 | 毛刺出现的密集程度 | 1~4分级代表毛刺 密度(0) 5.未出现毛刺(1) | (0) 1057 (1) 504 |
分叶 | 分叶出现的密集程度 | 1~4分级代表分叶 密度(0) 5.未出现分叶(1) | (0) 1287 (1) 274 |
纹理 | 结节的内部纹理 | 1.纯磨玻璃(2) 2. - 3.半实性(1) 4. - 5.实性(0) | (0) 1184 (1) 161 (2) 216 |
钙化 | 结节是否出现钙化 | 1.爆米花型(0) 2.板层状(0) 3.实性(0) 4.非中心型(0) 5.中心型(0) 6.无钙化(1) | 176 1385 |
内部结构 | 结节的内部组成 | 1.软组织(0) 2.流体(1) 3. - 4. - 5.空气(2) | (0) 1054 (1) 29 (2) 478 |
表2
各模型仅使用结节CT图像进行多任务分类的结果比较
分类特征 | Res50 | OMoE | Res50+LSTM | Res50+ATT+LSTM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | |||||
形状 | 66.89 | 45.25 | 0.79 | 67.22 | 46.52 | 0.82 | 68.24 | 48.61 | 0.75 | 70.01 | 50.97 | 0.69 | ||||
边界 | 78.93 | 87.12 | 0.78 | 78.26 | 87.22 | 0.85 | 78.95 | 88.64 | 0.76 | 79.21 | 88.01 | 0.80 | ||||
毛刺 | 94.98 | 97.26 | 0.58 | 93.97 | 96.89 | 0.57 | 94.31 | 97.86 | 0.53 | 94.32 | 97.38 | 0.53 | ||||
分叶 | 94.98 | 97.42 | 0.67 | 94.98 | 97.42 | 0.68 | 95.00 | 97.46 | 0.62 | 95.55 | 97.89 | 0.52 | ||||
内部成分 | 99.33 | 34.53 | 0.03 | 99.33 | 34.44 | 0.02 | 99.33 | 34.81 | 0.07 | 99.32 | 33.59 | 0.05 | ||||
实性程度 | 68.56 | 73.30 | 0.59 | 68.22 | 74.09 | 0.64 | 75.57 | 75.67 | 0.57 | 78.62 | 71.94 | 0.48 | ||||
钙化 | 88.63 | 94.55 | 0.32 | 84.61 | 91.84 | 0.41 | 89.97 | 94.71 | 0.35 | 90.00 | 94.93 | 0.33 | ||||
恶性程度 | 83.27 | 66.89 | 0.77 | 79.60 | 66.92 | 0.90 | 84.60 | 67.95 | 0.70 | 85.10 | 75.98 | 0.63 |
表3
各模型使用结节CT图像以及掩模图像进行多任务分类的结果比较
分类特征 | Res50 | OMoE | Res50+LSTM | Res50+ATT+Bi-LSTM | Res50+ATT+LSTM | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | |||||||||
形状 | 67.22 | 47.56 | 0.80 | 68.23 | 47.66 | 0.81 | 69.20 | 49.66 | 0.73 | 70.98 | 51.15 | 0.68 | 71.21 | 51.99 | 0.70 | ||||||||
边界 | 78.66 | 87.59 | 0.82 | 77.93 | 87.96 | 0.83 | 79.20 | 87.59 | 0.75 | 81.25 | 88.56 | 0.75 | 81.11 | 89.10 | 0.74 | ||||||||
毛刺 | 94.31 | 97.07 | 0.54 | 94.31 | 97.10 | 0.54 | 94.32 | 97.38 | 0.56 | 94.31 | 97.42 | 0.53 | 94.31 | 97.65 | 0.50 | ||||||||
分叶 | 94.98 | 97.42 | 0.64 | 94.98 | 97.43 | 0.64 | 95.10 | 97.11 | 0.59 | 95.12 | 97.89 | 0.52 | 95.66 | 97.88 | 0.50 | ||||||||
内部成分 | 99.33 | 34.36 | 0.03 | 99.33 | 34.67 | 0.04 | 99.33 | 35.01 | 0.06 | 99.32 | 34.89 | 0.06 | 99.32 | 34.41 | 0.06 | ||||||||
实性程度 | 78.26 | 75.36 | 0.57 | 78.01 | 67.05 | 0.62 | 78.72 | 75.90 | 0.51 | 78.77 | 71.56 | 0.58 | 78.88 | 71.28 | 0.48 | ||||||||
钙化 | 89.97 | 94.88 | 0.42 | 89.96 | 94.71 | 0.43 | 89.99 | 97.48 | 0.40 | 92.29 | 95.15 | 0.37 | 92.21 | 95.12 | 0.31 | ||||||||
恶性程度 | 81.27 | 67.65 | 0.80 | 80.60 | 66.29 | 0.83 | 84.88 | 71.29 | 0.66 | 86.59 | 78.05 | 0.54 | 86.61 | 78.11 | 0.59 |
表4
已有方法与所提方法的结果比较
特征 | 文献[9] | 文献[20] | Res50+ATT+LSTM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
θ% | F1% | e | θ% | F1% | e | θ% | F1% | e | |||
形状 | - | - | - | - | - | 0.86 | 71.21 | 51.99 | 0.70 | ||
边界 | 72.5 | 68.97 | - | - | - | 0.92 | 81.11 | 89.10 | 0.74 | ||
毛刺 | - | - | - | - | - | 0.64 | 94.31 | 97.65 | 0.50 | ||
分叶 | - | - | - | - | - | 0.80 | 95.66 | 97.88 | 0.50 | ||
内部成分 | - | - | - | - | - | 0.02 | 99.32 | 34.41 | 0.06 | ||
实性程度 | - | - | - | - | - | 0.18 | 78.88 | 71.28 | 0.48 | ||
钙化 | 90.8 | 84.74 | - | - | - | 0.87 | 92.21 | 95.12 | 0.31 | ||
恶性程度 | 84.2 | 78.64 | - | - | - | 0.87 | 86.61 | 68.11 | 0.59 |
[1] | VANDENHENDE S, GEORGOULIS S, VAN GANSBEKE W, et al. Multi-task learning for dense prediction tasks: A survey[DB/OL]. (2021-01-26) [2021-03-01]. https://ieeexplore.ieee.org/abstract/document/9336293. |
[2] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988. |
[3] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768. |
[4] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031 URL |
[5] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]// Computer vision-ECCV 2016. Cham, Switzerland: Springer International Publishing, 2016: 21-37. |
[6] |
DUNNICK N R, LANGLOTZ C P. The radiology report of the future: A summary of the 2007 intersociety conference[J]. Journal of the American College of Radiology, 2008, 5(5): 626-629.
doi: 10.1016/j.jacr.2007.12.015 URL |
[7] | KOKKINOS I. UberNet:Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 5454-5463. |
[8] | MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 3994-4003. |
[9] |
SHEN S W, HAN S X, ABERLE D R, et al. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification[J]. Expert Systems With Applications, 2019, 128: 84-95.
doi: 10.1016/j.eswa.2019.01.048 URL |
[10] |
AMYAR A, MODZELEWSKI R, LI H, et al. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation[J]. Computers in Biology and Medicine, 2020, 126: 104037.
doi: 10.1016/j.compbiomed.2020.104037 URL |
[11] | CHEN Z V. BADRINARAYANAN V, LEE C Y, et al. Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks[C]// International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 794-803. |
[12] | LIU S K, JOHNS E, DAVISON A J. End-to-end multi-task learning with attention[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 1871-1880. |
[13] | GUO M, HAQUE A, HUANG D A, et al. Dynamic task prioritization for multitask learning[M]// Computer vision-ECCV 2018. Cham, Switzerland: Springer International Publishing, 2018: 282-299. |
[14] | JALALI A, SANGHAVI S, RUAN C, et al. A dirty model for multi-task learning[J]. Advances in Neural Information Processing Systems, 2010, 23: 964-972. |
[15] | ANDO R K, ZHANG T, BARTLETT P. A framework for learning predictive structures from multiple tasks and unlabeled data[J]. Journal of Machine Learning Research, 2005, 6: 1817-1853. |
[16] | CHEN J H, LIU J, YE J P. Learning incoherent sparse and low-rank patterns from multiple tasks[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 5(4): 1-31. |
[17] |
JACOBS R A, JORDAN M I, NOWLAN S J, et al. Adaptive mixtures of local experts[J]. Neural Computation, 1991, 3(1): 79-87.
doi: 10.1162/neco.1991.3.1.79 URL |
[18] | SHAZEER N, MIRHOSEINI A, MAZIARZ K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer[DB/OL]. (2017-01-23) [2021-03-01]. https://arxiv.org/abs/1701.06538. |
[19] | MA J Q, ZHAO Z, YI X Y, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA: ACM, 2018: 1930-1939. |
[20] |
CHEN S H, QIN J, JI X, et al. Automatic scoring of multiple semantic attributes with multi-task feature leverage: A study on pulmonary nodules in CT images[J]. IEEE Transactions on Medical Imaging, 2017, 36(3): 802-814.
doi: 10.1109/TMI.2016.2629462 URL |
[21] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2999-3007. |
[22] |
ARMATO S G I, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931.
doi: 10.1118/1.3528204 URL |
[23] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016: 770-778. |
[24] |
MCNITT-GRAY M F, ARMATO S G III, MEYER C R, et al. The lung image database consortium (LIDC) data collection process for nodule detection and annotation[J]. Academic Radiology, 2007, 14(12): 1464-1474.
doi: 10.1016/j.acra.2007.07.021 URL |
[25] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211.
doi: 10.1038/s41592-020-01008-z URL |
[26] | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Shenzhen, China: IEEE, 2018: 7482-7491. |
[27] | KENDALL A, GAL Y, CIPOLLA R, et al. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA: IEEE, 2018: 7482-7491. |
[1] | 王瑞,刘宾,周天润,杨羽. 基于协同表示的声振传感器网络车辆分类识别[J]. 上海交通大学学报(自然版), 2018, 52(1): 103-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||