上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (7): 877-885.doi: 10.16183/j.cnki.jsjtu.2021.209
收稿日期:
2021-06-15
出版日期:
2022-07-28
发布日期:
2022-08-16
作者简介:
全大英(1979-),男,浙江省丽水市人,高级工程师,从事无线测试系统设计、电子侦察信号处理和智能频谱测量计量研究. E-mail: 基金资助:
QUAN Daying(), CHEN Yun, TANG Zeyu, LI Shitong, WANG Xiaofeng, JIN Xiaoping
Received:
2021-06-15
Online:
2022-07-28
Published:
2022-08-16
摘要:
为解决在低信噪比下特征提取困难、雷达信号识别率低的问题,提出了一种基于Choi-Williams分布(CWD)和多重同步压缩变换(MSST)的双通道卷积神经网络模型.模型通过对雷达信号进行CWD和MSST时频分析,分别获取二维时频图像并进行预处理,然后送入双通道卷积神经网络进行深度特征提取,最后将两路通道获取的特征进行融合,通过卷积神经网络分类器实现对雷达信号的分类识别.仿真结果表明:在信噪比为 -10 dB时,所提模型整体识别准确率能达到96%以上,其在低信噪比下表现优异.
中图分类号:
全大英, 陈赟, 唐泽雨, 李世通, 汪晓锋, 金小萍. 基于双通道卷积神经网络的雷达信号识别[J]. 上海交通大学学报, 2022, 56(7): 877-885.
QUAN Daying, CHEN Yun, TANG Zeyu, LI Shitong, WANG Xiaofeng, JIN Xiaoping. Radar Signal Recognition Based on Dual Channel Convolutional Neural Network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 877-885.
[1] | 王军锋, 刘兴钊. 合成孔径雷达运动目标检测的研究进展[J]. 上海交通大学学报, 2018, 52(10): 1273-1279. |
WANG Junfeng, LIU Xingzhao. Development in SAR moving-target detection[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1273-1279. | |
[2] |
IGLESIAS V, GRAJAL J, ROYER P, et al. Real-time low-complexity automatic modulation classifier for pulsed radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 108-126.
doi: 10.1109/TAES.2014.130183 URL |
[3] | 李波波, 幸涛. 基于报文数据的雷达侦察系统侦察能力评估[J]. 现代信息科技, 2020, 4(23): 54-57. |
LI Bobo, XING Tao. Evaluation on reconnaissance capability of radar reconnaissance system based on message data[J]. Modern Informationn Technology, 2020, 4(23): 54-57 | |
[4] | 孟磊, 曲卫, 蔡凯, 等. 基于机器学习的雷达辐射源识别方法综述[J]. 兵器装备工程学报, 2020, 41(10): 16-21. |
MENG Lei, QU Wei, CAI Kai, et al. Overview of radar emitter identification based on machine learning[J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 16-21. | |
[5] |
JIANG W, REN Y H, LIU Y, et al. A method of radar target detection based on convolutional neural network[J]. Neural Computing and Applications, 2021, 33(16): 9835-9847.
doi: 10.1007/s00521-021-05753-w URL |
[6] | ZHU J D, ZHAO Y J, TANG J. Automatic recognition of radar signals based on time-frequency image character[C]∥IET International Radar Conference 2013. Xi’an, China: IET, 2013: 1-6. |
[7] |
LIU Z P, WANG L D, FENG Y T, et al. A recognition method for time-frequency overlapped waveform-agile radar signals based on matrix transformation and multi-scale center point detection[J]. Applied Acoustics, 2021, 175: 107855.
doi: 10.1016/j.apacoust.2020.107855 URL |
[8] | 陈昌孝, 何明浩, 徐璟, 等. 基于模糊函数相像系数的雷达辐射源信号分选[J]. 电波科学学报, 2014, 29(2): 260-264. |
CHEN Changxiao, HE Minghao, XU Jing, et al. Radar emitter signal sorting based on resemblance coefficient of ambiguity function[J]. Chinese Journal of Radio Science, 2014, 29(2): 260-264. | |
[9] | 王功明, 陈世文, 黄洁, 等. 基于多重同步压缩变换的雷达辐射源分选识别[J]. 现代雷达, 2020, 42(3): 49-56. |
WANG Gongming, CHEN Shiwen, HUANG Jie, et al. Radar emitter sorting and recognition based on multi-synchrosqueezing transform[J]. Modern Radar, 2020, 42(3): 49-56. | |
[10] | VERMA S, AGRAWAL R. Deep neural network in medical image processing[M]∥Handbook of deep learning in biomedical engineering. Amsterdam, USA: Elsevier, 2021: 271-292. |
[11] | 王功明, 陈世文, 黄洁, 等. 基于迁移深度学习的雷达信号分选识别[J]. 计算机科学与应用, 2019, 9(9): 1761-1788. |
WANG Gongming, CHEN Shiwen, HUANG Jie, et al. Radar signal sorting and recognition based on transferred deep learning[J]. Computer Science and Application, 2019, 9(9): 1761-1788.
doi: 10.12677/CSA.2019.99198 URL |
|
[12] | 谢存祥, 张立民, 钟兆根. 基于时频特征提取和残差神经网络的雷达信号识别[J]. 系统工程与电子技术, 2021, 43(4): 917-926. |
XIE Cunxiang, ZHANG Limin, ZHONG Zhaogen. Radar signal recognition based on time-frequency feature extraction and residual neural network[J]. Systems Engineering and Electronics, 2021, 43(4): 917-926. | |
[13] |
WEI S J, QU Q Z, SU H, et al. Intra-pulse modulation radar signal recognition based on CLDN network[J]. IET Radar, Sonar & Navigation, 2020, 14(6): 803-810.
doi: 10.1049/iet-rsn.2019.0436 URL |
[14] | ALASKAR H. Deep learning-based model architecture for time-frequency images analysis[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(12): 486-494. |
[15] |
FENG Z P, LIANG M, CHU F L. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205.
doi: 10.1016/j.ymssp.2013.01.017 URL |
[16] |
LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981.
doi: 10.1109/JSEE.2015.00106 URL |
[17] |
YU G, WANG Z H, ZHAO P. Multisynchrosqueezing transform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5441-5455.
doi: 10.1109/TIE.2018.2868296 URL |
[18] |
LI D X, JIA H Y, YE Y C, et al. High power microwave signal detection based on second order multisynchrosqueezing transform[J]. Journal of Physics: Conference Series, 2020, 1617(1): 012049.
doi: 10.1088/1742-6596/1617/1/012049 URL |
[19] |
LI Z Y. Modulation recognition of communication signals based on deep learning joint model[J]. Journal of Physics: Conference Series, 2021, 1856(1): 012042.
doi: 10.1088/1742-6596/1856/1/012042 URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||