上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (S2): 42-50.doi: 10.16183/j.cnki.jsjtu.2021.S2.007
收稿日期:
2021-10-20
出版日期:
2021-12-28
发布日期:
2022-01-24
通讯作者:
徐波
E-mail:xubo@shiep.edu.cn
作者简介:
金皓纯(1983-),男,浙江省绍兴市人,高级工程师,从事调度自动化、电力监控系统网络安全研究.
JIN Haochun1, GE Minhui1, XU Bo2()
Received:
2021-10-20
Online:
2021-12-28
Published:
2022-01-24
Contact:
XU Bo
E-mail:xubo@shiep.edu.cn
摘要:
针对新能源并网带来的系统频率稳定问题,双馈感应风力发电机(DFIG)多采用虚拟惯量及下垂控制参与电力系统的调频.为了能够充分发挥DFIG的调频能力,通过分析频率动态响应各阶段虚拟惯量及下垂系数的作用机理,提出对虚拟惯量及下垂系数的自适应控制.基于极限学习机预测不同等级风速下的各项调频指标,通过对调频指标建立目标函数对综合自适应调频控制参数的优化,并提出最优减载率有功备用控制方案.仿真结果表明了该方法的有效性.
中图分类号:
金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50.
JIN Haochun, GE Minhui, XU Bo. Optimization of DFIG Comprehensive Adaptive Frequency Regulation Parameters Based on Extreme Learning Machine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 42-50.
[1] | 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646. |
LIU Ju, YAO Wei, WEN Jinyu, et al. Prospect of technology for large scale wind farm participating into power grid frequency regulation[J]. Power System Technology, 2014, 38(3): 638-646. | |
[2] | 邵昊舒, 蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报, 2018, 52(10): 1166-1177. |
SHAO Haoshu, CAI Xu. Research status and prospect of inertia control for large scale wind turbines[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1166-1177. | |
[3] | 秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42(09): 36-43. |
QIN Xiaohui, SU Lining, CHI Yongning, et al. Analysis of inertia support and primary frequency modulation function positioning of virtual synchronous generators in large power grids[J]. Automation of Electric Power Systems, 2018, 42(09): 36-43. | |
[4] |
GEORGETA B, REMUS P, CRISTIAN P, et al. Spatial assessment of wind power potential at global scale A geographical approach[J]. Journal of Cleaner Production, 2018, 200(32): 1065-1086.
doi: 10.1016/j.jclepro.2018.07.288 URL |
[5] | 李少林, 王伟胜, 张兴, 等. 风力发电对系统频率影响及虚拟惯量综合控制[J]. 电力系统自动化, 2019, 43(15): 64-70. |
LI Shaolin, WANG Weisheng, ZHANG Xing, et al. Impact of wind power on power system frequency and combined virtual inertia control[J]. Automation of Electric Power Systems, 2019, 43(15): 64-70. | |
[6] |
LEE J, MULJADI E, SORENSEN P, et al. Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 279-288.
doi: 10.1109/TSTE.2015.2493165 URL |
[7] | 柴建云, 赵杨阳, 孙旭东, 等. 虚拟同步发电机技术在风发电系统中的应用与展望[J]. 电力系统自动化, 2018, 42(09): 17-25. |
CHAI Jianyun, ZHAO Yangyang, SUN Xudong, et al. Application and prospect of virtual synchronous generator technology in wind power generation system[J]. Automation of Electric Power Systems, 2018, 42(09): 17-25. | |
[8] | 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232. |
ZHANG Guanfeng, YANG Junyou, SUN Feng, et al. Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232. | |
[9] | 邢鹏翔, 侍乔明, 王刚, 等. 风电机组虚拟惯量控制的响应特性及机理分析[J]. 高电压技术, 2018, 44(4): 1302-1310. |
XING Pengxiang, SHI Qiaoming, WANG Gang, et al. Response characteristics and mechanism analysis about virtual inertia control of wind generators[J]. High Voltage Engineering, 2018, 44(4): 1302-1310. | |
[10] | 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68. |
ZHAO Jingjing, LÜ Xue, FU Yang, et al. Wind-solar diesel microgrid frequency adjustment technology based on variable coefficient-based virtual inertia and overspeed control of doubly-fed wind turbines[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 59-68. | |
[11] |
LI D, ZHU Q, LIN S, et al. A self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 397-398.
doi: 10.1109/TEC.2016.2623982 URL |
[12] | 程启明, 余德清, 程尹曼, 等. 基于自适应旋转惯量的虚拟同步发电机控制策略[J]. 电力自动化设备, 2018, 38(12): 79-85. |
CHENG Qiming, YU Deqing, CHENG Yinman, et al. Control strategy of virtual synchronous generator based on adaptive rotational inertia[J]. Electric Power Automation Equipment, 2018, 38(12): 79-85. | |
[13] | 杨旭红, 姚凤军, 郝鹏飞, 等. 基于改进型RBF神经网络的VSG转动惯量自适应控制[J]. 电测与仪表, 2021, 58(2): 112-117. |
YANG Xuhong, YAO Fengjun, HAO Pengfei, et al. Adaptive control of VSG moment of inertia based on improved RBF neural network[J]. Electrical Measurement and Instrumentation, 2021, 58(2): 112-117. | |
[14] | 颜湘武, 孙颖, 李晓宇, 等. 基于双馈风力发电场虚拟惯量控制策略优化[J]. 华北电力大学学报, 2020, 47(6): 42-51. |
YAN Xiangwu, SUN Ying, LI Xiaoyu, et al. Optimization of virtual inertia control strategy for doubly-fed wind farms[J]. Journal of North China Electric Power University, 2020, 47(6): 42-51. | |
[15] | 兰飞, 潘益丰, 时萌, 等. 双馈风电机组变系数虚拟惯量优化控制[J]. 电力系统自动化, 2019, 43(12): 51-59. |
LAN Fei, PAN Yifeng, SHI Meng, et al. Variable coefficient virtual inertia optimal control for doubly-fed wind turbines[J]. Automation of Electric Power Systems, 2019, 43(12): 51-59. | |
[16] |
HUANG G, SONG S J, GUPTA D. Semi-supervised and unsupervised extreme learning mchines[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417.
doi: 10.1109/TCYB.2014.2307349 URL |
[17] | 张林林, 胡熊伟, 李鹏, 等. 基于极限学习机的电力系统暂态稳定评估方法[J]. 上海交通大学学报, 2019, 53(6): 749-756. |
ZHANG Linlin, HU Xiongwei, LI Peng, et al. Power system transient stability assessment based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 749-756. |
[1] | 席剑辉, 姜瀚, 陈博, 傅莉. 基于PCA-ELM的红外多光谱辐射测温[J]. 上海交通大学学报, 2021, 55(7): 891-898. |
[2] | 李春祥, 张浩怡. 基于混合多变量经验模态分解和极限学习机的非平稳过程预测[J]. 上海交通大学学报, 2020, 54(4): 376-386. |
[3] | 张林林,胡熊伟,李鹏,石访,于之虹. 基于极限学习机的电力系统暂态稳定评估方法[J]. 上海交通大学学报, 2019, 53(6): 749-756. |
[4] | 刘敏,张英堂,李志宁,范红波. 基于增量稀疏核极限学习机的柴油机故障在线诊断[J]. 上海交通大学学报(自然版), 2019, 53(2): 217-224. |
[5] | 钟国强1,2,王浩1,张国华1,覃卫民1,王成汤1,2,熊俊峰1,2. 基于RS-MIV-ELM模型的基坑水平位移影响因素分析和预测[J]. 上海交通大学学报(自然版), 2018, 52(11): 1508-1515. |
[6] | 张伟,许爱强,高明哲. 一种基于积累一致性测量的在线状态预测算法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1391-1398. |
[7] | 卢诚波,梅颖. 前馈网络的一种高精度鲁棒在线贯序学习算法[J]. 上海交通大学学报(自然版), 2015, 49(08): 1137-1143. |
[8] | 王萍,王迪,冯伟. 基于流形正则化的在线半监督极限学习机[J]. 上海交通大学学报(自然版), 2015, 49(08): 1153-1158. |
[9] | 刘菲菲,彭荻,贺彦林,朱群雄. 基于极限学习的过程神经网络研究及化工应用[J]. 上海交通大学学报(自然版), 2014, 48(07): 977-981. |
[10] | 张英堂,马超,李志宁,范红波. 基于快速留一交叉验证的核极限学习机在线建模[J]. 上海交通大学学报(自然版), 2014, 48(05): 647-652. |
[11] | 刘学艺a, 李平a, b, 郜传厚c. 极限学习机的快速留一交叉验证算法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1140-1145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||