上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (7): 850-857.doi: 10.16183/j.cnki.jsjtu.2020.129
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“材料科学”专题
收稿日期:
2020-05-01
出版日期:
2021-07-28
发布日期:
2021-07-30
通讯作者:
沈耀
E-mail:yaoshen@sjtu.edu.cn
作者简介:
张 宇(1993-),男,江苏省淮安市人,硕士生,从事金属材料在断裂韧性尺寸效应方面的研究
基金资助:
ZHANG Yu, LIU Haiting, WENG Lin, SHEN Yao()
Received:
2020-05-01
Online:
2021-07-28
Published:
2021-07-30
Contact:
SHEN Yao
E-mail:yaoshen@sjtu.edu.cn
摘要:
在役设备和辐照材料的断裂韧性可以采用环形缺口小冲杆试样获取.采用内聚力模型描述T91钢的韧性断裂行为和裂纹扩展过程,并以反向有限元法标定模型所需的两个材料参数.反向有限元法的成功实现需要断裂损伤阶段的载荷位移曲线对两个模型参数较为敏感,可以通过样品和缺口的几何尺寸加以优化.研究了试样直径与厚度的比例、试样缺口深度以及有无预制裂纹3个因素对参数敏感性的影响,得到缺口样品的优化设计.在此基础上,选取两组参数进行有限元模拟,得到载荷位移曲线.以此曲线作为逼近目标,采用遗传算法和随机游走算法进行反向有限元迭代拟合,提取内聚力模型参数.计算结果表明.所得参数与预先选取的参数误差为1%以内,验证了样品设计的灵敏度和反向有限元法的准确性.
中图分类号:
张宇, 刘海亭, 翁琳, 沈耀. 环形缺口小冲杆试样结合内聚力模型提取断裂韧性参数[J]. 上海交通大学学报, 2021, 55(7): 850-857.
ZHANG Yu, LIU Haiting, WENG Lin, SHEN Yao. Extraction of Fracture Toughness Parameters by Ring-Notched Small Punch Specimen Using Cohesive Model[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 850-857.
[1] |
TAFFESE W Z, SISTONEN E. Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions[J]. Automation in Construction, 2017, 77:1-14.
doi: 10.1016/j.autcon.2017.01.016 URL |
[2] |
PANDEY C, MAHAPATRA M M, KUMAR P, et al. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel[J]. Journal of Nuclear Materials, 2018, 498:176-186.
doi: 10.1016/j.jnucmat.2017.10.037 URL |
[3] |
ÁLVAREZ G, RODRÍGUEZ C, BELZUNCE F J, et al. Use of notched small punch test specimens for the determination of fracture properties in structural steels[J]. Theoretical and Applied Fracture Mechanics, 2020, 106:102442.
doi: 10.1016/j.tafmec.2019.102442 URL |
[4] |
BAIK J M, KAMEDA J, BUCK O. Small punch test evaluation of intergranular embrittlement of an alloy steel[J]. Scripta Metallurgica, 1983, 17(12): 1443-1447.
doi: 10.1016/0036-9748(83)90373-3 URL |
[5] |
MARTÍNEZ-PAÑEDA E, GARCÍA T E, RODRÍGUEZ C. Fracture toughness characterization through notched small punch test specimens[J]. Materials Science and Engineering: A, 2016, 657:422-430.
doi: 10.1016/j.msea.2016.01.077 URL |
[6] |
ALTSTADT E, HOUSKA M, SIMONOVSKI I, et al. On the estimation of ultimate tensile stress from small punch testing[J]. International Journal of Mechanical Sciences, 2018, 136:85-93.
doi: 10.1016/j.ijmecsci.2017.12.016 URL |
[7] |
CAMPAGNOLO A, BERTO F, LEGUILLON D. Fracture assessment of sharp V-notched components under Mode II loading: A comparison among some recent criteria[J]. Theoretical and Applied Fracture Mechanics, 2016, 85:217-226.
doi: 10.1016/j.tafmec.2016.02.001 URL |
[8] | HASSANI M E, PAN W K. Identification of plastic properties of metallic structures by artificial neural networks based on plane strain small punch test[J]. International Journal of System Assurance Engineering and Management, 2017, 8(3): 646-654. |
[9] |
LI Y Z, STEVENS P, SUN M C, et al. Improvement of predicting mechanical properties from spherical indentation test[J]. International Journal of Mechanical Sciences, 2016, 117:182-196.
doi: 10.1016/j.ijmecsci.2016.08.019 URL |
[10] |
PETERSEN D R, FOULDS J R, WOYTOWITZ P J, et al. Fracture toughness by small punch testing[J]. Journal of Testing and Evaluation, 1995, 23(1): 3.
doi: 10.1520/JTE10392J URL |
[11] |
FANG Z, LI A Q, BAO H Y, et al. Calculation of stress intensity factor in two-dimensional cracks by strain energy density factor procedure[J]. Science China Technological Sciences, 2018, 61(4): 542-550.
doi: 10.1007/s11431-017-9186-9 URL |
[12] |
YANG S S, LING X, XUE L. Application of small punch test to investigate mechanical behaviours and deformation characteristics of Incoloy800H[J]. Journal of Alloys and Compounds, 2018, 765:497-504.
doi: 10.1016/j.jallcom.2018.06.243 URL |
[13] |
TENG B G, WANG W N, XU Y C. Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model[J]. Engineering Fracture Mechanics, 2017, 186:242-254.
doi: 10.1016/j.engfracmech.2017.10.014 URL |
[14] |
LI K S, PENG J, ZHOU C Y. Construction of whole stress-strain curve by small punch test and inverse finite element[J]. Results in Physics, 2018, 11:440-448.
doi: 10.1016/j.rinp.2018.09.024 URL |
[15] |
PAGGI M, REINOSO J. Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 321:145-172.
doi: 10.1016/j.cma.2017.04.004 URL |
[16] | 朱锦斌. 环形裂纹小冲杆试样精度确定和试验研究[D]. 上海: 华东理工大学, 2016. |
ZHU Jinbin. Research on crack precision of circular pre-cracked specimens and small punch test[D]. Shanghai: East China University of Science and Technology, 2016. | |
[17] |
MATOS J, LAINE J, HERRMANN J M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon[J]. Applied Catalysis B: Environmental, 1998, 18(3-4): 281-291.
doi: 10.1016/S0926-3373(98)00051-4 URL |
[18] | 孙家啟, 纪冬梅, 唐家志. 内聚力模型在裂纹萌生及扩展中的应用[J]. 上海电力学院学报, 2016, 32(2): 129-134. |
SUN Jiaqi, JI Dongmei, TANG Jiazhi. Application of cohesive model in crack initiation and propagation[J]. Journal of Shanghai Electric Power University, 2016, 32(2): 129-134. | |
[19] |
CORNETTI P, SAPORA A, CARPINTERI A. Short cracks and V-notches: Finite fracture mechanics vs. cohesive crack model[J]. Engineering Fracture Mechanics, 2016, 168:2-12.
doi: 10.1016/j.engfracmech.2015.12.016 URL |
[20] |
HEIDARI-RARANI M, GHASEMI A R. Appropriate shape of cohesive zone model for delamination propagation in ENF specimens with R-curve effects[J]. Theoretical and Applied Fracture Mechanics, 2017, 90:174-181.
doi: 10.1016/j.tafmec.2017.04.009 URL |
[21] | XU R, BOUBY C, ZAHROUNI H, et al. 3D mo-deling of shape memory alloy fiber reinforced compo-sites by multiscale finite element method[J]. Compo-site Structures, 2018, 200:408-419. |
[1] | 段红燕,王智明,桑元成. III型裂纹裂尖应力场的内聚力模型[J]. 上海交通大学学报(自然版), 2017, 51(1): 113-. |
[2] | 王艳飞,巩建鸣. 高压氢气对金属材料断裂韧性的影响[J]. 上海交通大学学报(自然版), 2014, 48(05): 610-613. |
[3] | 白小敏, 巩建鸣, 王艳飞. 高强钢氢致滞后断裂滞后时间的有限元预测 [J]. 上海交通大学学报(自然版), 2012, 46(07): 1079-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||