上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 1001-1008.doi: 10.16183/j.cnki.jsjtu.2020.295
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
收稿日期:
2020-09-14
出版日期:
2021-08-28
发布日期:
2021-08-31
作者简介:
李 元(1964-),女,辽宁省沈阳市人,教授,博士生导师,现主要从事统计过程控制和基于数据驱动的过程故障监控与诊断研究,电话(Tel.):13082424115;E-mail: 基金资助:
Received:
2020-09-14
Online:
2021-08-28
Published:
2021-08-31
摘要:
针对化工过程的变量数据维数高、非线性的问题,提出基于邻域保持嵌入(NPE)-主多项式分析(PPA) 的过程故障检测算法.应用NPE算法提取高维数据的低维子流形,能够解决传统的线性降维算法不能提取局部结构信息的问题,对维数进行约减.利用PPA法时,使用一组灵活的主多项式分量来描述数据, 能够有效地捕捉过程数据中固有的非线性结构.在降维后的流形空间进行主多项式分析并建立Hotelling’s T2和平方预测误差统计量模型,同时确定控制限以进行故障检测.最后,通过一组非线性数值实例和Tennessee Eastman化工过程数据,将NPE-PPA算法与传统的核主元分析法、PPA法进行对比分析,验证所提算法的有效性及优越性.
中图分类号:
李元, 姚宗禹. 基于邻域保持嵌入的主多项式非线性过程故障检测[J]. 上海交通大学学报, 2021, 55(8): 1001-1008.
LI Yuan, YAO Zongyu. Principal Polynomial Nonlinear Process Fault Detection Based on Neighborhood Preserving Embedding[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1001-1008.
表1
TE过程的21种故障
故障编号 | 性质描述 | 变化类型 |
---|---|---|
IDV1 | 物料U/C进料比改变,物料B含量不变 | 阶跃 |
IDV2 | 物料U/C进料比不变,物料B含量改变 | 阶跃 |
IDV3 | 物料D进料温度改变 | 阶跃 |
IDV4 | 反应器冷却入口温度改变 | 阶跃 |
IDV5 | 冷凝器冷却入口温度改变 | 阶跃 |
IDV6 | 物料U进料损失 | 阶跃 |
IDV7 | 物料C压力损失 | 阶跃 |
IDV8 | 物料U、B、C的组成比例改变 | 随机变量 |
IDV9 | 物料D进料温度改变 | 随机变量 |
IDV10 | 物料C进料温度改变 | 随机变量 |
IDV11 | 反应器冷却水入口温度改变 | 随机变量 |
IDV12 | 冷凝器冷却水入口温度改变 | 随机变量 |
IDV13 | 反应动力学参数改变 | 慢偏移 |
IDV14 | 反应器冷却阀门 | 粘住 |
IDV15 | 冷凝器冷却阀门 | 粘住 |
IDV16 | 未知 | 未知 |
IDV17 | 未知 | 未知 |
IDV18 | 未知 | 未知 |
IDV19 | 未知 | 未知 |
IDV20 | 未知 | 未知 |
IDV21 | 物流4阀门固定在恒定位置 | 恒定位置 |
表2
3种方法对TE过程21个故障的检测率
故障 | KPCA | PPA | NPE-PPA | |||||
---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |||
IDV1 | 0.99 | 1 | 0.99 | 1 | 0.98 | 1 | ||
IDV2 | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | 0.99 | ||
IDV3 | 0.01 | 0.08 | 0.12 | 0.21 | 0.06 | 0.20 | ||
IDV4 | 0.09 | 0.48 | 0.19 | 0.97 | 0.13 | 0.99 | ||
IDV5 | 0.22 | 0.30 | 0.31 | 0.39 | 1 | 1 | ||
IDV6 | 0.91 | 1 | 0.99 | 1 | 1 | 1 | ||
IDV7 | 0.99 | 1 | 0.48 | 1 | 0.71 | 1 | ||
IDV8 | 0.97 | 0.98 | 0.95 | 0.98 | 0.85 | 0.98 | ||
IDV9 | 0.01 | 0.09 | 0.15 | 0.23 | 0.04 | 0.16 | ||
IDV10 | 0.08 | 0.75 | 0.51 | 0.67 | 0.83 | 0.93 | ||
IDV11 | 0.30 | 0.54 | 0.34 | 0.72 | 0.13 | 0.74 | ||
IDV12 | 0.96 | 0.99 | 0.97 | 0.99 | 0.99 | 1 | ||
IDV13 | 0.94 | 0.95 | 0.94 | 0.97 | 0.95 | 0.96 | ||
IDV14 | 0.94 | 1 | 0.83 | 1 | 0.89 | 1 | ||
IDV15 | 0.01 | 0.10 | 0.16 | 0.25 | 0.07 | 0.26 | ||
IDV16 | 0.04 | 0.77 | 0.39 | 0.65 | 0.83 | 0.95 | ||
IDV17 | 0.69 | 0.88 | 0.78 | 0.94 | 0.87 | 0.97 | ||
IDV18 | 0.89 | 0.89 | 0.88 | 0.91 | 0.90 | 0.92 | ||
IDV19 | 0 | 0.45 | 0.05 | 0.32 | 0.60 | 0.88 | ||
IDV20 | 0.24 | 0.79 | 0.43 | 0.70 | 0.84 | 0.92 | ||
IDV21 | 0.29 | 0.37 | 0.27 | 0.50 | 0.43 | 0.68 |
[1] |
SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annual Reviews in Control, 2016, 42:190-200.
doi: 10.1016/j.arcontrol.2016.09.001 URL |
[2] |
MD NOR N, CHE HASSAN C R, HUSSAIN M A. A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems[J]. Reviews in Chemical Engineering, 2020, 36(4):513-553.
doi: 10.1515/revce-2017-0069 URL |
[3] |
JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
doi: 10.1002/aic.v60.3 URL |
[4] |
ZHANG X M, LI Y, KANO M. Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure[J]. Industrial and Engineering Chemistry Research, 2015, 54:7694-7705.
doi: 10.1021/acs.iecr.5b01425 URL |
[5] |
LI Y, ZHANG X M. Variable moving windows based non-Gaussian dissimilarity analysis technique for batch processes fault detection and diagnosis[J]. The Canadian Journal of Chemical Engineering, 2015, 93(4):689-707.
doi: 10.1002/cjce.v93.4 URL |
[6] |
KANO M, NAKAGAWA Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2):12-24.
doi: 10.1016/j.compchemeng.2007.07.005 URL |
[7] |
LUO L J, BAO S Y, MAO J F, et al. Monitoring batch processes using sparse parallel factor decomposition[J]. Industrial & Engineering Chemistry Research, 2017, 56(44):12682-12692.
doi: 10.1021/acs.iecr.7b02618 URL |
[8] |
LI Y, ZHANG X M. Diffusion maps based k-nearest-neighbor rule technique for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 136:47-57.
doi: 10.1016/j.chemolab.2014.05.003 URL |
[9] |
SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319.
doi: 10.1162/089976698300017467 URL |
[10] |
LEE J M, YOO C, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
doi: 10.1016/j.ces.2003.09.012 URL |
[11] |
CHOI S W, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1):55-67.
doi: 10.1016/j.chemolab.2004.05.001 URL |
[12] |
BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6):1373-1396.
doi: 10.1162/089976603321780317 URL |
[13] |
KRAMER M A. Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal, 1991, 37(2):233-243.
doi: 10.1002/(ISSN)1547-5905 URL |
[14] |
MONAHAN A H. Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system[J]. Journal of Climate, 2000, 13(4):821-835.
doi: 10.1175/1520-0442(2000)013<0821:NPCABN>2.0.CO;2 URL |
[15] |
DONG D, MCAVOY T J. Nonlinear principal component analysis—Based on principal curves and neural networks[J]. Computers & Chemical Engineering, 1996, 20(1):65-78.
doi: 10.1016/0098-1354(95)00003-K URL |
[16] | 张妮, 田学民. 基于等距离映射的非线性动态故障检测方法[J]. 上海交通大学学报, 2011, 45(8):1202-1206. |
ZHANG Ni, TIAN Xuemin. Nonlinear dynamic fault detection method based on isometric mapping[J]. Journal of Shanghai Jiao Tong University, 2011, 45(8):1202-1206. | |
[17] | LAPARRA V, TUIA D, JIMÉNEZ S, et al. Principal polynomial analysis for remote sensing data processing[C]//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, 2011: 12536130. |
[18] | LAPARRA V, TULA D, JIMENEZ S, et al. Nonlinear data description with principal polynomial analysis[C]//2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander, Spain: IEEE, 2012: 13117221. |
[19] |
ZHANG X M, KANO M, LI Y. Principal polynomial analysis for fault detection and diagnosis of industrial processes[J]. IEEE Access, 2018, 6:52298-52307.
doi: 10.1109/ACCESS.2018.2870140 URL |
[20] |
ZHANG X M, LI Y. Multiway principal polynomial analysis for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181:29-35.
doi: 10.1016/j.chemolab.2018.08.005 URL |
[21] | HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005: 1208-1213. |
[22] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
doi: 10.1016/0098-1354(93)80018-I URL |
[23] |
GE Z Q, SONG Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors[J]. Industrial & Engineering Chemistry Research, 2007, 46(7):2054-2063.
doi: 10.1021/ie061083g URL |
[24] |
YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
doi: 10.1016/j.jprocont.2012.06.009 URL |
[25] |
JIANG L, SONG Z H, GE Z Q, et al. Robust self-supervised model and its application for fault detection[J]. Industrial & Engineering Chemistry Research, 2017, 56(26):7503-7515.
doi: 10.1021/acs.iecr.7b00949 URL |
[1] | 何夏维, 蔡云泽, 严玲玲. 一种合成残差式的反作用轮故障检测方法[J]. 上海交通大学学报, 2021, 55(6): 716-728. |
[2] | 赵小强, 牟淼. 基于GSFA-GNPE的动态-静态联合指标间歇过程监控[J]. 上海交通大学学报, 2021, 55(11): 1417-1428. |
[3] | 徐巧宁,艾青林,杜学文,刘毅. 模型-数据联合驱动的船舶舵机电液伺服系统早期故障检测[J]. 上海交通大学学报, 2020, 54(5): 451-464. |
[4] | 黄健, 杨旭. 基于在线加权慢特征分析的故障检测算法[J]. 上海交通大学学报, 2020, 54(11): 1142-1150. |
[5] | 胡静1,王春霞2,文成林2,李平1. 基于核质量潜结构投影的非线性过程质量监测方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 737-742. |
[6] | 尚骏,陈茂银,周东华. 基于变元统计分析的微小故障检测[J]. 上海交通大学学报(自然版), 2015, 49(06): 799-805. |
[7] | 刘洋,何潇,周东华. 分布式测量下闭环系统的故障检测[J]. 上海交通大学学报(自然版), 2015, 49(06): 757-761. |
[8] | 丛亚,葛志强,宋执环. 多采样率主元分析的过程故障检测[J]. 上海交通大学学报(自然版), 2015, 49(06): 762-767. |
[9] | 柳春,姜斌,张柯,吴云凯. 带扰动的线性系统微小故障早期诊断方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 889-896. |
[10] | 蔡连芳,田学民,张妮. 基于核状态空间ICA的非线性动态过程故障检测方法[J]. 上海交通大学学报(自然版), 2014, 48(07): 971-976. |
[11] | 方挺,董冲,胡兴柳,王彦. 航拍图像中绝缘子串的轮廓提取和故障检测[J]. 上海交通大学学报(自然版), 2013, 47(12): 1818-1822. |
[12] | 王天真1, 2, 高迪驹1, 刘萍1, 汤天浩1 . 基于动态限的非周期非稳定工况故障检测模型[J]. 上海交通大学学报(自然版), 2012, 46(04): 607-612. |
[13] | 康嘉, 韩华, 谷波, 邱峰. 制冷空调系统故障检测与诊断中的空气侧换热模型[J]. 上海交通大学学报(自然版), 2011, 45(09): 1368-1373. |
[14] | 张妮, 田学民. 基于等距离映射的非线性动态故障检测方法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1202-1206. |
[15] | 刘平岳,吴淮宁. 非线性分布参数系统鲁棒故障检测观测器设计 [J]. 上海交通大学学报(自然版), 2011, 45(02): 241-0246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||