上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1417-1428.doi: 10.16183/j.cnki.jsjtu.2020.290
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
收稿日期:
2020-09-14
出版日期:
2021-11-28
发布日期:
2021-12-03
作者简介:
赵小强(1969-),男,陕西省宝鸡市人,教授,博士生导师,研究方向为过程监控和故障诊断、生产调度及数据挖掘.E-mail: 基金资助:
ZHAO Xiaoqianga,b,c(), MOU Miaoa
Received:
2020-09-14
Online:
2021-11-28
Published:
2021-12-03
摘要:
传统的过程监控方法忽略了变量间的时序相关性,且没有区分变量间的动态关系与静态关系,从而导致监控效果不佳.针对此问题,本文提出一种基于全局慢特征分析(GSFA)-全局邻域保持嵌入(GNPE)的动态-静态联合指标间歇过程监控方法,该方法可以有效提取动态全局特征和静态全局特征.首先,对过程变量的动态特性和静态特性进行评估,把自相关和互相关性较弱的变量视为静态变量,剩余变量视为动态变量;其次,分别对动态子空间和静态子空间构建GSFA和GNPE模型;然后,对来自每个子空间的统计信息使用贝叶斯推理进行组合,以得出混合模型的联合指标实现过程监控;最后,将所提算法应用于数值算例和青霉素发酵仿真过程进行仿真验证.结果表明,GSFA-GNPE算法相较于其他算法的故障检测效果更好.
中图分类号:
赵小强, 牟淼. 基于GSFA-GNPE的动态-静态联合指标间歇过程监控[J]. 上海交通大学学报, 2021, 55(11): 1417-1428.
ZHAO Xiaoqiang, MOU Miao. Batch Process Monitoring with Dynamic-Static Joint Indicator Based on GSFA-GNPE[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1417-1428.
表5
青霉素发酵过程中4个故障批次故障检测率
故障 序号 | NPE | SFA | TNPE | DPCA | GSFA-GNPE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | S2 | SPE | T2 | SPE | T2 | SPE | BIC-C2 | BIC-SPE | BIC | ||||||
1 | 1/0.085 | 1/0.005 | 1/0.05 | 1/0.005 | 1/0.06 | 0.995/0.005 | 0.99/0.08 | 1/0.05 | 1/0.04 | 1/0.04 | 1/0.005 | |||||
2 | 0.945/0.1 | 0.95/0 | 0.875/0.02 | 0.98/0 | 0.97/0.15 | 0.965/0.125 | 0.915/0.25 | 0.95/0.135 | 0.925/0.03 | 1/0 | 0.995/0.03 | |||||
3 | 0.99/0.08 | 1/0.01 | 0.98/0.01 | 1/0.005 | 1/0.065 | 1/0.02 | 0.99/0.005 | 1/0.03 | 1/0.01 | 1/0 | 1/0.01 | |||||
4 | 0.44/0.105 | 0.94/0 | 0.925/0.065 | 0.475/0 | 0.65/0.22 | 0.94/0 | 0.93/0.07 | 0.915/0.05 | 0.815/0.04 | 0.91/0 | 0.975/0.04 |
[1] |
WANG R, EDGAR T F, BALDEA M, et al. A geometric method for batch data visualization, process monitoring and fault detection[J]. Journal of Process Control, 2018, 67:197-205.
doi: 10.1016/j.jprocont.2017.05.011 URL |
[2] | 赵春晖, 余万科, 高福荣. 非平稳间歇过程数据解析与状态监控——回顾与展望[J]. 自动化学报, 2020, 46(10):2072-2091. |
ZHAO Chunhui, YU Wanke, GAO Furong. Data analytics and condition monitoring methods for nonstationary batch processes—Current status and future[J]. Acta Automatica Sinica, 2020, 46(10):2072-2091. | |
[3] | 纪洪泉, 何潇, 周东华. 基于多元统计分析的故障检测方法[J]. 上海交通大学学报, 2015, 49(6):842-848. |
JI Hongquan, HE Xiao, ZHOU Donghua. Fault detection techniques based on multivariate statistical analysis[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6):842-848. | |
[4] | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1):1-9. |
LI Han, XIAO Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1):1-9. | |
[5] | 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2):161-166. |
YAO Xu, WANG Xiaodan, ZHANG Yuxi, et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2):161-166. | |
[6] | 童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. |
TONG Chudong, LAN Ting, SHI Xuhua. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323. | |
[7] | HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]// Tenth IEEE International Conference on Computer Vision (ICCV’05) . Beijing: IEEE, 2005: 1208-1213. |
[8] | 陈法法, 杨晓青, 陈保家, 等. 基于正交邻域保持嵌入与多核相关向量机的滚动轴承早期故障诊断[J]. 计算机集成制造系统, 2018, 24(8):1946-1954. |
CHEN Fafa, YANG Xiaoqing, CHEN Baojia, et al. Early fault diagnosis of rolling bearing based on orthogonal neighbourhood preserving embedding and multi-kernel relevance vector machine[J]. Computer Integrated Manufacturing Systems, 2018, 24(8):1946-1954. | |
[9] |
TONG C D, LAN T, SHI X H. Fault detection and diagnosis of dynamic processes using weighted dynamic decentralized PCA approach[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161:34-42.
doi: 10.1016/j.chemolab.2016.11.015 URL |
[10] |
KU W F, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):179-196.
doi: 10.1016/0169-7439(95)00076-3 URL |
[11] | 苗爱敏, 葛志强, 宋执环, 等. 基于时序扩展的邻域保持嵌入算法及其在故障检测中的应用[J]. 华东理工大学学报(自然科学版) , 2014, 40(2):218-224. |
MIAO Aimin, GE Zhiqiang, SONG Zhihuan, et al. Neighborhood preserving embedding based on temporal extension and its application in fault detection[J]. Journal of East China University of Science and Technology (Natural Science Edition) , 2014, 40(2):218-224. | |
[12] |
ZHANG H Y, TIAN X M, DENG X G. Batch process monitoring based on multiway global preserving kernel slow feature analysis[J]. IEEE Access, 2017, 5:2696-2710.
doi: 10.1109/ACCESS.2017.2672780 URL |
[13] |
HONG H F, JIANG C, PENG X, et al. Concurrent monitoring strategy for static and dynamic deviations based on selective ensemble learning using slow feature analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(10):4620-4635.
doi: 10.1021/acs.iecr.9b05547 URL |
[14] |
YAN S F, JIANG Q C, ZHENG H Y, et al. Quality-relevant dynamic process monitoring based on dynamic total slow feature regression model[J]. Measurement Science and Technology, 2020, 31(7):075102.
doi: 10.1088/1361-6501/ab7bbd URL |
[15] |
CHAI Z, ZHAO C H. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1):54-66.
doi: 10.1109/TII.9424 URL |
[16] |
WISKOTT L, SEJNOWSKI T J. Slow feature analysis: Unsupervised learning of invariances[J]. Neural Computation, 2002, 14(4):715-770.
doi: 10.1162/089976602317318938 URL |
[17] | 索寒生, 蒋白桦, 宫向阳, 等. 基于SFA的工业过程质量相关的在线故障检测[J]. 控制工程, 2019, 26(6):1222-1227. |
SUO Hansheng, JIANG Baihua, GONG Xiangyang, et al. Online quality-related fault detection of industrial processes based on SFA[J]. Control Engineering of China, 2019, 26(6):1222-1227. | |
[18] | 张汉元, 田学民. 基于KSFDA-SVDD的非线性过程故障检测方法[J]. 化工学报, 2016, 67(3):827-832. |
ZHANG Hanyuan, TIAN Xuemin. Nonlinear process fault detection based on KSFDA and SVDD[J]. CIESC Journal, 2016, 67(3):827-832. | |
[19] | SHARDT Y A W. Statistics for chemical and process engineers[M]. Berlin, Germany: Springer, 2015. |
[20] | 顾幸生, 周冰倩. 基于LNS-DEWKECA算法的多模态工业过程故障检测[J]. 控制与决策, 2020, 35(8):1879-1886. |
GU Xingsheng, ZHOU Bingqian. Multimodal industrial process fault detection based on LNS-DEWKECA[J]. Control and Decision, 2020, 35(8):1879-1886. | |
[21] |
LEE J M, YOO C, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5):467-485.
doi: 10.1016/j.jprocont.2003.09.004 URL |
[22] | ROBINSON J A. Probability and statistics for engineers and scientists[J]. Technometrics, 1990, 32(3):348-349. |
[23] | 胡永兵, 高学金, 李亚芬, 等. 批次加权软化分的多阶段AR-PCA间歇过程监测[J]. 仪器仪表学报, 2015, 36(6):1291-1300. |
HU Yongbing, GAO Xuejin, LI Yafen, et al. Multiphase AR-PCA monitoring for batch processes based on the batch weighted soft classifying[J]. Chinese Journal of Scientific Instrument, 2015, 36(6):1291-1300. | |
[24] |
ZHAO H T. Dynamic graph embedding for fault detection[J]. Computers & Chemical Engineering, 2018, 117:359-371.
doi: 10.1016/j.compchemeng.2018.05.018 URL |
[1] | 郭金玉, 李文涛, 李元. 在线压缩核主元分析的自适应过程监控[J]. 上海交通大学学报, 2022, 56(10): 1397-1408. |
[2] | 李元, 姚宗禹. 基于邻域保持嵌入的主多项式非线性过程故障检测[J]. 上海交通大学学报, 2021, 55(8): 1001-1008. |
[3] | 黄健, 杨旭. 基于在线加权慢特征分析的故障检测算法[J]. 上海交通大学学报, 2020, 54(11): 1142-1150. |
[4] | 郭红杰1,徐春玲2,侍洪波1. 基于局部邻域标准化策略的多工况过程故障检测[J]. 上海交通大学学报(自然版), 2015, 49(06): 868-875. |
[5] | 王立敏1,2,周东华1,朱城杰2. 间歇过程复合迭代学习容错保性能控制器设计[J]. 上海交通大学学报(自然版), 2015, 49(06): 743-750. |
[6] | 张欢欢. 海洋石油平台钢结构焊接质量控制[J]. 海洋工程装备与技术, 2014, 1(2): 174-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||