上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (4): 471-479.doi: 10.16183/j.cnki.jsjtu.2020.99.013

所属专题: 《上海交通大学学报》2021年12期专题汇总专辑 《上海交通大学学报》2021年“材料科学”专题

• • 上一篇    下一篇

基于激光点热源非稳态传热模型测固体材料热物性参数

陈清华1,2(), 高伟2, 苏国用2, 关维娟1, 秦汝祥1, 季家东1,2, 马杨斌3   

  1. 1.安徽理工大学 省部共建深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001
    2.安徽理工大学 矿山智能装备与技术安徽省重点实验室,安徽 淮南 232001
    3.达姆施塔特工业大学 材料科学学院,德国 达姆施塔特 D-64287
  • 收稿日期:2019-08-24 出版日期:2021-04-28 发布日期:2021-04-30
  • 作者简介:陈清华(1978-),男,安徽省宿州市人,教授,从事材料热物性学、传热传质学等领域的研究.电话(Tel.):18605548100;E-mail: ahhnds@163.com.
  • 基金资助:
    国家重点研发计划(2018YFC0807900);国家自然科学基金(51874007);安徽省高等学校自然科学研究重点项目(KJ2018A0080)

Test of Thermo-Physical Property Parameters of Solid Material Based on Laser Point Heat Source Unsteady-State Heat Transfer Model

CHEN Qinghua1,2(), GAO Wei2, SU Guoyong2, GUAN Weijuan1, QIN Ruxiang1, JI Jiadong1,2, MA Yangbin3   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, Anhui, China
    2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Huainan 232001, Anhui, China
    3. School of Materials Science, Darmstadt University of Technology, Darmstadt D-64287, Germany
  • Received:2019-08-24 Online:2021-04-28 Published:2021-04-30

摘要:

提出一种基于激光点热源非稳态传热模型测各向同性固体材料热物性参数的新方法.引入镜像热源理论修正绝热边界对测点温升的影响,建立数学模型,利用数值解法结合计算机编程计算材料导热系数和热扩散率,并研制了热物性测试系统.利用真空泵获得试样容器内的低真空环境,由激光发生器发射激光束加热试样一角,温度传感器测量试样上表面温度,通过无线信号发射单元监测温度变化情况.对硼硅玻璃(Pyrex7740)、大理石、硅藻土耐火砖、硅砖和锆质砖进行热物性综合测试.结果表明:前4种导热系数相对较低的试样的测试值与参考值的相对偏差最大不超过2.76%,测试精度较高.导热系数相对较大的锆质砖的测试值与参考值的相对偏差达到了6.38%,测试精度较低.测试系统不确定度分析也表明,被测试样导热系数越大,测试值与真值间的可信度越低,本装置更适用于导热系数小于3.0W/(m·K)的固体材料.

关键词: 激光点热源, 非稳态传热模型, 镜像热源原理, 固体材料, 热物性参数

Abstract:

Based on the laser point heat source unsteady state transfer model, a novel method to gain thermo-physical parameters of isotropic solid materials is proposed. The enantiomorphous heat-source theory is introduced to calibrate the influence of adiabatic boundary on temperature rise of the measuring points, and a mathematical model is established. The thermal conductivity and thermal diffusivity of the material are calculated by numerical solution combined with computer programming, and a thermo-physical testing system is developed. The low vacuum environment in the sample container is obtained by using a vacuum pump. The laser generator emits a laser beam to heat a corner of the sample, and the variation of temperature on the upper surface of the sample measured by the temperature sensor is monitored by the wireless signal transmitting unit. The thermophysical properties of borosilicate glass (Pyrex7740), marble, diatomite firebrick, silica brick, and zirconium brick are comprehensively tested. The results show that the relative deviation between the test values of the first four samples with a relatively low thermal conductivity and the reference value is not more than 2.76%, and the test accuracy is higher. The relative deviation between the test values of the zirconium brick with a relatively large thermal conductivity and the reference value reaches 6.38%, and the test accuracy is lower. Uncertainty analysis of the test system shows that as the thermal conductivity of the tested sample increases, the credibility between the test value and the true value decreases, indicating that the device is more suitable for solid materials with a thermal conductivity less than 3.0W/(m·K).

Key words: laser point source, non-steady state heat transfer model, enantiomorphism heat-source theory, solid material, thermo-physical property

中图分类号: