上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (4): 357-364.doi: 10.16183/j.cnki.jsjtu.2019.286
所属专题: 《上海交通大学学报》2021年“土木建筑工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2019-10-14
出版日期:
2021-04-28
发布日期:
2021-04-30
通讯作者:
杨健
E-mail:j.yang.1@sjtu.edu.cn
作者简介:
张景博(1995-),男,江苏省启东市人,硕士生,研究方向为结构抗连续倒塌
基金资助:
ZHANG Jingbo, YANG Jian(), WANG Feiliang
Received:
2019-10-14
Online:
2021-04-28
Published:
2021-04-30
Contact:
YANG Jian
E-mail:j.yang.1@sjtu.edu.cn
摘要:
填充墙对预制混凝土(PC)框架的抗连续倒塌性能有显著影响,而现阶段缺乏对应的设计方法.为了得到可靠的抗连续倒塌计算方法,针对带填充墙PC框架的抗连续倒塌特性进行数值与解析分析.根据去除中柱后的无填充墙PC框架和带填充墙PC框架3∶1缩尺试验,考虑填充墙不对称分布下的中柱偏移,引入不对称系数,建立基于填充墙等效压杆的力学模型.利用有限元法,建立填充墙不对称分布情况下的子框架数值模型,分析得到中柱位移-荷载曲线.在此基础上,将解析解与无填充墙、双填充墙PC框架结构试验以及单填充墙PC框架结构数值结果进行对比验证,结果吻合良好.通过与现有规范中的设计方法对比发现:在考虑填充墙情况下,PC框架在悬链线峰值荷载时的位移增大,现有规范中建议的中柱位移为跨度的0.2倍适用于无填充墙预制框架,对于带填充墙的预制框架则偏于保守.研究结果为填充墙PC框架抗连续倒塌计算提供依据.
中图分类号:
张景博, 杨健, 王斐亮. 带填充墙预制混凝土框架抗连续倒塌分析[J]. 上海交通大学学报, 2021, 55(4): 357-364.
ZHANG Jingbo, YANG Jian, WANG Feiliang. Progressive Collapse Resistance Analysis of Precast Concrete Frames with Infill Walls[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 357-364.
表3
解析与规范推荐方法预测结果
机制 | Δ/mm | 施加荷载/kN | 规范 | 解析 | |||
---|---|---|---|---|---|---|---|
预测荷载/kN | 相对误差/% | 预测荷载/kN | 相对误差/% | ||||
无填充墙PC框架梁机制 | 40.5 | 32.147 | 31.134 | 3.2 | |||
无填充墙PC框架悬链线机制 | 420.4 | 52.900 | 54.008 | 2.1 | 56.627 | 7.0 | |
双填充墙PC框架梁机制 | 102.5 | 120.270 | 125.218 | 4.1 | |||
双填充墙PC框架悬链线机制 | 470.7 | 169.250 | 146.921 | 13.2 | 170.176 | 0.5 | |
单填充墙PC框架梁机制 | 81.6 | 60.567 | 64.193 | 6.0 | |||
单填充墙PC框架悬链线机制 | 496.3 | 112.629 | 104.594 | 7.1 | 115.213 | 2.3 |
[1] | 于晓辉, 钱凯, 吕大刚. 考虑悬链线效应的钢筋混凝土框架结构抗连续倒塌能力分析[J]. 建筑结构学报, 2017, 38(4):28-34. |
YU Xiaohui, QIAN Kai, LÜ Dagang. Progressive collapse capacity analysis of reinforced concrete frame structures considering catenary action[J]. Journal of Building Structures, 2017, 38(4):28-34. | |
[2] |
DAT P X, HAI T K, JUN Y. A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures[J]. Engineering Structures, 2015, 101:45-57.
doi: 10.1016/j.engstruct.2015.06.051 URL |
[3] |
FU Q N, TAN K H. Parametric effects on composite floor systems under column removal scenario[J]. Engineering Structures, 2019, 187:161-176.
doi: 10.1016/j.engstruct.2019.01.139 URL |
[4] |
WANG S, KANG S B. Analytical investigation on catenary action in axially-restrained reinforced concrete beams[J]. Engineering Structures, 2019, 192:145-155.
doi: 10.1016/j.engstruct.2019.05.008 URL |
[5] | 单思镝. RC填充墙框架连续倒塌机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
SHAN Sidi. Research on progressive collapse mechanisms of RC frames with infill walls[D]. Harbin: Harbin Institute of Technology, 2016. | |
[6] | 高润东, 蒋利学, 王春江, 等. 基于等效斜压杆理论的RC框架填充墙承载力计算方法研究[J]. 结构工程师, 2015, 31(5):37-41. |
GAO Rundong, JIANG Lixue, WANG Chunjiang, et al. Development capacity calculation method for RC frames with infilled walls based on the equivalent diagonal strut theory[J]. Structural Engineers, 2015, 31(5):37-41. | |
[7] | 孙立建, 郭宏超, 刘云贺. 外挂再生混凝土墙钢框架结构等效单压杆模型有限元分析[J]. 应用力学学报, 2018, 35(2):428-435. |
SUN Lijian, GUO Hongchao, LIU Yunhe. Finite element analysis of equivalent single strut model of steel frame structure with recycled concrete external wall[J]. Chinese Journal of Applied Mechanics, 2018, 35(2):428-435. | |
[8] | 中国工程建设标准化协会. 建筑结构抗倒塌设计规范: CECS 392—2014[S]. 北京: 中国计划出版社, 2015. |
China Association for Engineering Construction Standardization. Code for anti-collapse design of building structures: CECS 392—2014[S]. Beijing: China Planning Press, 2015. | |
[9] | 陆依晖. 填充墙对预制装配式混凝土框架结构抗连续倒塌性能的影响[D]. 上海: 上海交通大学, 2019. |
LU Yihui. The influence of infill walls on the progressive collapse resistance of precast concrete frames[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[10] |
EL-DAKHAKHNI W W, ELGAALY M, HAMID A A. Three-strut model for concrete masonry-infilled steel frames[J]. Journal of Structural Engineering, 2003, 129(2):177-185.
doi: 10.1061/(ASCE)0733-9445(2003)129:2(177) URL |
[11] |
MOHAMMAD NOH N, LIBERATORE L, MOLLAIOLI F, et al. Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees[J]. Engineering Structures, 2017, 150:599-621.
doi: 10.1016/j.engstruct.2017.07.002 URL |
[12] | SMITH B S. Lateral stiffness of infilled frames[J]. Journal of the Structural Division, 1962, 88(6):183-226. |
[13] | SMITH B S. Behaviour of square infilled frames[J]. Journal of the Structural Division, 1966, 92(1):381-403. |
[14] | 李永梅, 王浩, 彭凌云, 等. 填充墙钢筋混凝土框架结构基于位移的改进抗震设计方法[J]. 建筑结构学报, 2019, 40(6):125-132. |
LI Yongmei, WANG Hao, PENG Lingyun, et al. Advanced displacement-based seismic design method of reinforced concrete frame structures with infill wall[J]. Journal of Building Structures, 2019, 40(6):125-132. | |
[15] | Masonry Standards Joint Committee. Building code requirements and specification for masonry structures: ACI 530/530.1—2013[S]. Farmington Hills, ML, USA: American Concrete Institute, 2013. |
[16] | 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. | |
[17] | 董硕. 填充墙钢框架结构抗连续倒塌性能分析[D]. 青岛: 山东科技大学, 2017. |
DONG Shuo. Progressive collapse behavior of steel frame with infilled wall[D]. Qingdao: Shandong University of Science and Technology, 2017. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||