[1] |
O’BROWN N M, PFAU S J, GU C. Bridging barriers: A comparative look at the blood-brain barrier across organisms[J]. Genes & Development, 2018, 32(7/8): 466-478.
|
[2] |
ABBOTT N J. Blood-brain barrier structure and function and the challenges for CNS drug delivery[J]. Journal of Inherited Metabolic Disease, 2013, 36(3): 437-449.
|
[3] |
PARDRIDGE W M. Blood-brain barrier drug targeting: The future of brain drug development[J]. Molecular Interventions, 2003, 3(2): 90-105.
|
[4] |
FAN K, JIA X, ZHOU M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma[J]. ACS Nano, 2018, 12(5): 4105-4115.
|
[5] |
FAN K, CAO C, PAN Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues[J]. Nature Nanotechnology, 2012, 7(7): 459-464.
|
[6] |
LIANG M, FAN K, ZHOU M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14900-14905.
|
[7] |
XUE J, ZHAO Z, ZHANG L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nature Nanotechnology, 2017, 12(7): 692-700.
|
[8] |
DONG X, GAO J, ZHANG C Y, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano, 2019, 13(2): 1272-1283.
|
[9] |
CHAI Z, RAN D, LU L, et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma[J]. ACS Nano, 2019, 13(5): 5591-5601.
|
[10] |
RUAN S, XIE R, QIN L, et al. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment[J]. Nano Letters, 2019, 19(11): 8318-8332.
|