上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (2): 196-205.doi: 10.16183/j.cnki.jsjtu.2019.303
所属专题: 《上海交通大学学报》2021年“电气工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2019-10-23
出版日期:
2021-02-01
发布日期:
2021-03-03
作者简介:
谢岳(1964-),男,江苏省苏州市人,教授,现主要从事电力电子功率变换和电气测量技术研究.电话(Tel.):0571-86835734;E-mail:XIE Yue(), SHEN Pengfei, JIANG Xiaoli
Received:
2019-10-23
Online:
2021-02-01
Published:
2021-03-03
摘要:
研究了一种经皮无线供能系统.首先通过电路分析得到系统电压增益和传输效率等特性函数,同时根据经皮无线供能典型技术参数进行特性分析,在此基础上设计了基于能量注入的变频恒压控制方案,使得无线供能系统在负载和传输距离变化时始终高效率运行.搭建了经皮无线供能的实验系统,实验结果验证了理论分析和设计方案的正确性,在固定传输距离的整个负载变化范围内整机效率基本保持恒定,典型传输距离内的整机效率达到83%以上.利用多物理场仿真软件进行人体组织安全性仿真实验,仿真结果表明最大电场强度、比吸收率和最高温度均低于限值.
中图分类号:
谢岳, 沈鹏飞, 蒋晓丽. 一种经皮无线供能系统[J]. 上海交通大学学报, 2021, 55(2): 196-205.
XIE Yue, SHEN Pengfei, JIANG Xiaoli. A Wireless Transcutaneous Energy Transfer System[J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 196-205.
[1] | 尹成科,徐博翎. 植入式人工心脏无线电能传输研究进展[J]. 电工技术学报,2015, 30(19): 103-109. |
YIN Chengke, HSU Polin. Wireless power transfer for implantable ventricular assistance: A review[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 103-109. | |
[2] | FRIEDMANN J, GROEDL F, KENNEL R. A novel universal control scheme for transcutaneous energy transfer (TET) applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 296-305. |
[3] | KNECHT O, BOSSHARD R, KOLAR J W. High-efficiency transcutaneous energy transfer for implantable mechanical heart support systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6221-6236. |
[4] | UNTHAN K, GRÄF F, LAUMEN M, et al. Design and evaluation of a fully implantable control unit for blood pumps[J]. BioMed Research International, 2015, 2015: 257848. |
[5] | TANG S C, LUN T L T, GUO Z Y, et al. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3844-3857. |
[6] | WANG J X, SMITH J R, BONDE P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability[J]. The Annals of Thoracic Surgery, 2014, 97(4): 1467-1474. |
[7] | LATHA M S H, MAKKENA S. A novel transcutaneous energy transfer technique for biomedical implants[C]∥Innovations in Power and Advanced Computing Technologies. Vellore, India. IEEE, 2017: 1-5. |
[8] | MIURA H, YAMADA A, SHIRAISHI Y, et al. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system[C]∥Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, Italy: IEEE, 2015: 1319-1322. |
[9] | ENSSLE A, HEINRICH J, PARSPOUR N. Analytical procedure for dimensioning transcutaneous inductive energy transfer systems[C]∥Brazilian Power Electronics Conference. Juiz de Fora, Brazil: IEEE, 2017: 1-5. |
[10] | 李达伟,姜萍萍,柯全,等. 肠道机器人无线能量发射系统优化设计[J]. 上海交通大学学报,2018, 52(9): 1031-1037. |
LI Dawei, JIANG Pingping, KE Quan, et al. Optimal design of wireless power transfer system for gastrointestinal robots[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1031-1037. | |
[11] | KNECHT O, KOLAR J W. Performance evaluation of series-compensated IPT systems for transcutaneous energy transfer[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 438-451. |
[12] | WANG B, HU A P, BUDGETT D. Power flow control based solely on slow feedback loop for heart pump applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(3): 279-286. |
[13] | KNECHT O, KOLAR J W. Impact of Transcutaneous Energy Transfer on the electric field and specific absorption rate in the human tissue[C]∥Annual Conference of the IEEE Industrial Electronics Society (IECON). Yokohama, Japan: IEEE, 2015: 4977-4983. |
[14] | XIAO C Y, CHENG D N, WEI K Z. An LCC-C compensated wireless charging system for implantable cardiac pacemakers: Theory, experiment, and safety evaluation[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4894-4905. |
[15] | 昝鹏,张春东,刘颜凯等. 基于经皮能量传输的人工肛门括约肌生物电磁相容性研究[J]. 上海交通大学学报,2018, 52(8): 997-1002. |
ZAN Peng, ZHANG Chundong, LIU Yankai, et al. Research on bio-electromagnetic compatibility of artificial anal sphincter based on transcutaneous energy transfer[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 997-1002. | |
[16] | 宫飞翔,魏志强,殷波,等. 人体植入式设备谐振耦合无线传能线圈优化设计[J]. 中国海洋大学学报,2016, 46(10): 129-134. |
GONG Feixiang, WEI Zhiqiang, YIN Bo, et al. Optimization design of coil for WPT system based on resonance coupling of human implantable devices[J]. Periodical of Ocean University of China, 2016, 46(10): 129-134. | |
[17] | 苏玉刚,陈苓芷,唐春森,等. 基于NSGA-II算法的ECPT系统PID参数寻优及输出稳压控制[J]. 电工技术学报,2016, 31(19): 106-114. |
SU Yugang, CHEN Lingzhi, TANG Chunsen, et al. Evolutionary multi-objective optimization of PID parameters for output voltage regulation in ECPT system based on NSGA-II[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 106-114. | |
[18] | 李青峰,陈少波,王伟明,等. 有源植入系统的磁耦合能量传输参数优化[J]. 清华大学学报(自然科学版), 2015, 55(3): 351-355. |
LI Qingfeng, CHEN Shaobo, WANG Weiming, et al. Parameter optimization of magnetic coupling energy transfer for active implantable systems[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(3): 351-355. | |
[19] | OGGIER G G, ORDONEZ M. High-efficiency DAB converter using switching sequences and burst mode[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2069-2082. |
[20] | 陶成轩. 非接触式电能传输系统的输出控制策略研究[D]. 重庆: 重庆大学,2012. |
TAO Chengxuan. Study on the strategy of output control for CPT system [D]. Chongqing: Chongqing University, 2012. | |
[21] | 孙跃,张路,王智慧,等. 交流包络调制无线电能传输系统的负载稳压输出研究[J]. 电力系统自动化,2017, 41(2): 33-37. |
SUN Yue, ZHANG Lu, WANG Zhihui, et al. Constant voltage output of wireless power transfer system based on AC envelope modulation[J]. Automation of Electric Power Systems, 2017, 41(2): 33-37. | |
[22] | GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293. |
[1] | 李泽垚, 周洁, 田万君, 裴万胜. 地铁变频荷载循环作用下饱和软黏土累积塑性变形[J]. 上海交通大学学报, 2022, 56(4): 454-463. |
[2] | 冯新, 付庄, 王科瑾, 郝高峰. 基于SSP补偿和变频控制的滑环设计[J]. 上海交通大学学报, 2021, 55(7): 814-825. |
[3] | 吕英创, 张磊, 谢少杰, 黄一飞, 程吉林, 王立坤. 变频调速技术在海洋石油平台空气压缩机橇中的应用与浅析[J]. 海洋工程装备与技术, 2018, 5(增刊): 75-79. |
[4] | 樊文斌, 宫俭纯, 赵波, 冯金强. 水下压缩机技术发展现状及关键技术研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 113-117. |
[5] | 胡佳俊,陈后鹏,王倩,李喜,苗杰,雷宇,宋志棠. 带轻载变频模式的升压式DCDC转换器设计[J]. 上海交通大学学报(自然版), 2017, 51(6): 658-664. |
[6] | 马天亮,徐添翼,高益,蔡萍. 基于支持向量机的热轧主电机风冷变频策略[J]. 上海交通大学学报(自然版), 2017, 51(5): 542-. |
[7] | 谢丽蓉, 魏志煌, 程静. 分布式变频无人值守换热站的监控系统设计[J]. 实验室研究与探索, 2017, 36(5): 135-138. |
[8] | 田镇, 谷波. 基于运行时间的变频型房间空调器季节能效比和潜力温度分析[J]. 上海交通大学学报(自然版), 2013, 47(03): 404-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||