上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (12): 1340-1346.doi: 10.16183/j.cnki.jsjtu.2020.172
• • 上一篇
收稿日期:
2019-09-29
出版日期:
2020-12-01
发布日期:
2020-12-31
通讯作者:
秦琳琳
E-mail:qll@ustc.edu.cn
作者简介:
陈玉珊(1995-),女,福建省厦门市人,硕士生,从事电池参数估计研究.
CHEN Yushan1, QIN Linlin1(), WU Gang1, MAO Junxin2
Received:
2019-09-29
Online:
2020-12-01
Published:
2020-12-31
Contact:
QIN Linlin
E-mail:qll@ustc.edu.cn
摘要:
电动汽车中,先进的电池管理系统可以为电池的安全高效使用提供保障.荷电状态(SOC)无法直接测量得到,电池管理系统的主要任务是准确、可靠地估计电池的SOC.为了估计电池的SOC,选择一阶电阻电容(RC)等效电路模型描述电池的外特性,模型参数中包含开路电压(OCV),通过渐消记忆递推最小二乘法(FFRLS)辨识模型参数,再用SOC-OCV模型实时计算.使用马里兰大学高级生命周期工程研究中心(CALCE)电池组提出的镍钴锰酸锂(LNMC)/石墨电池在动态应力测试(DST)和北京动态应力测试(BJDST)工况下的数据检验算法,结果表明,SOC估计误差在DST工况下不超过 3.419 0%,在BJDST工况下不超过 4.233 5%,实现了SOC的在线估计.
中图分类号:
陈玉珊, 秦琳琳, 吴刚, 毛俊鑫. 基于渐消记忆递推最小二乘法的电动汽车电池荷电状态在线估计[J]. 上海交通大学学报, 2020, 54(12): 1340-1346.
CHEN Yushan, QIN Linlin, WU Gang, MAO Junxin. Online State of Charge Estimation for Battery in Electric Vehicles Based on Forgetting Factor Recursive Least Squares[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1340-1346.
[1] | XING Y J, HE W, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113: 106-115. |
[2] | LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577. |
[3] | TANIM T R, RAHN C D, WANG C Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model[J]. Energy, 2015, 80: 731-739. |
[4] | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
[5] | XIONG R, SUN F C, GONG X Z, et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles[J]. Applied Energy, 2014, 113: 1421-1433. |
[6] | HE W, WILLIARD N, CHEN C, et al. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation[J]. International Journal of Electrical Power and Energy Systems, 2014, 62: 783-791. |
[7] | WANG Y J, ZHANG C B, CHEN Z H. On-line battery state-of-charge estimation based on an integrated estimator[J]. Applied Energy, 2017, 185: 2026-2032. |
[8] | YANG F F, XING Y J, WANG D, et al. A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile[J]. Applied Energy, 2016, 164: 387-399. |
[9] | DUONG V H, BASTAWROUS H A, LIM K, et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares[J]. Journal of Power Sources, 2015, 296: 215-224. |
[10] | HE H W, ZHANG X W, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318. |
[11] | ZHANG C, ALLAFI W, DINH Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688. |
[12] | PALEOLOGU C, BENESTY J, CIOCHINA S. A robust variable forgetting factor recursive least-squares algorithm for system identification[J]. IEEE Signal Processing Letters, 2008, 15: 597-600. |
[13] | 冯培悌. 系统辨识[M]. 2版. 杭州: 浙江大学出版社,2004. |
FENG Peiti. System identification [M]. 2nd ed. Hangzhou: Zhejiang University Press, 2004. | |
[14] | ZHENG F D, XING Y J, JIANG J C, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183: 513-525. |
[15] | DUONG T Q. USABC and PNGV test procedures[J]. Journal of Power Sources, 2000, 89(2): 244-248. |
[16] | 时玮,姜久春,张维戈,等. 纯电动公交车动力电池寿命测试行驶工况的研究[J]. 汽车工程,2013, 35(2): 138-151. |
SHI Wei, JIANG Jiuchun, ZHANG Weige, et al. A study on the driving cycle for the life test of traction battery in electric buses[J]. Automotive Engineering, 2013, 35(2): 138-151. |
[1] | 李恒杰, 朱江皓, 傅晓飞, 方陈, 梁达明, 周云. 基于集成学习的电动汽车充电站超短期负荷预测[J]. 上海交通大学学报, 2022, 56(8): 1004-1013. |
[2] | 李林晏, 韩爽, 乔延辉, 李莉, 刘永前, 阎洁, 刘海东. 面向高比例新能源并网场景的风光-电动车协同调度方法[J]. 上海交通大学学报, 2022, 56(5): 554-563. |
[3] | 胡春阳, 吴鑫, 周峰. 基于区块链技术的电动汽车绿证交易研究[J]. 上海交通大学学报, 2021, 55(S2): 64-71. |
[4] | 侯珏, 姚栋伟, 吴锋, 吕成磊, 王涵, 沈俊昊. 混合励磁电机的电动汽车增程器控制策略[J]. 上海交通大学学报, 2021, 55(2): 206-212. |
[5] | 吕祥梅, 刘天琪, 刘绚, 何川, 南璐, 曾红. 考虑高比例新能源消纳的多能源园区日前低碳经济调度[J]. 上海交通大学学报, 2021, 55(12): 1586-1597. |
[6] | 刘昊东, 张庆振, 郭云鹤, 茅佳雯. 基于递推最小二乘法的变体飞行器模型参数在线辨识[J]. 空天防御, 2020, 3(3): 103-110. |
[7] | 刘雨声,李万勇,张立,施骏业,陈江平. 采用R1234yf制冷剂的汽车超低温强化补气热泵空调性能[J]. 上海交通大学学报, 2020, 54(10): 1108-1116. |
[8] | 俞彬彬,王丹东,向伟,余浩弘,陈江平. 跨临界CO2电动汽车空调系统性能分析[J]. 上海交通大学学报, 2019, 53(7): 866-872. |
[9] | 李萍,谷波,缪梦华. 废热回收型纯电动汽车热泵系统试验研究[J]. 上海交通大学学报(自然版), 2019, 53(4): 468-472. |
[10] | 张建军,刘卫东,李乐,程瑞锋,郑海峰. 未知环境下水下机械手智能抓取的自适应阻抗控制[J]. 上海交通大学学报(自然版), 2019, 53(3): 341-347. |
[11] | 籍庆辉,朱平,卢家海,刘钊. 基于Kriging近似模型的碳纤维增强复合[J]. 上海交通大学学报(自然版), 2017, 51(2): 129-. |
[12] | 龚小祥, 常思勤, 蒋李晨, 李小攀. 电动汽车新型线控制动单元及其控制系统[J]. 上海交通大学学报, 2016, 50(03): 395-400. |
[13] | 牛继高a,司璐璐a,周苏a,b,章桐a,b,c. 增程式电动汽车能量控制策略的仿真分析[J]. 上海交通大学学报(自然版), 2014, 48(1): 140-145. |
[14] | 吴志伟, 张建龙, 吴红杰, 殷承良. 低速电动汽车混合能源存储系统效率分析 [J]. 上海交通大学学报(自然版), 2012, 46(08): 1304-1309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||