上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (9): 967-972.doi: 10.16183/j.cnki.jsjtu.2020.147
收稿日期:
2020-05-25
出版日期:
2020-09-28
发布日期:
2020-10-10
通讯作者:
王婷
E-mail:chunchun1010@163.com
作者简介:
朱金梁(1994-),男,江苏省盐城市人,硕士生,主要从事时滞控制系统分析和设计研究
基金资助:
ZHU Jinliang1, WANG Ting1(), LI Tao2
Received:
2020-05-25
Online:
2020-09-28
Published:
2020-10-10
Contact:
WANG Ting
E-mail:chunchun1010@163.com
摘要:
为研究线性时滞广义系统的渐近稳定性问题,利用时滞分割法均匀分割时滞区间,构造包含多重积分的Lyapunov-Krasovskii泛函以充分利用各子区间的时滞信息,并利用改进的Wirtinger型积分不等式估计泛函导函数的更紧上界,进而建立判定系统渐近稳定的时滞相关充分条件.最后,通过对比3个数值算例的仿真结果,证明了方法的有效性和先进性.
中图分类号:
朱金梁, 王婷, 李涛. 基于Wirtinger型积分不等式的线性时滞广义系统稳定性准则[J]. 上海交通大学学报, 2020, 54(9): 967-972.
ZHU Jinliang, WANG Ting, LI Tao. Stability Criteria of Linear Time-Delay Singular Systems Based on Wirtinger-Type Integral Inequality[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 967-972.
[1] | RICHARD J P. Time-delay systems: An overview of some recent advances and open problems[J]. Automatica, 2003,39(10):1667-1694. |
[2] | HIEN L V, TRINH H. An enhanced stability criterion for time-delay systems via a new bounding technique[J]. Journal of the Franklin Institute, 2015,352(10):4407-4422. |
[3] | ZENG H B, HE Y, WU M, et al. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2015,60(10):2768-2772. |
[4] | ZENG H B, HE Y, WU M, et al. New results on stability analysis for systems with discrete distributed delay[J]. Automatica, 2015,60:189-192. |
[5] | PARK P, LEE W I, LEE S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[J]. Journal of the Franklin Institute, 2015,352(4):1378-1396. |
[6] | CHENG J, WANG H L, CHEN S Q, et al. Robust delay-derivative-dependent state-feedback control for a class of continuous-time system with time-varying delays[J]. Neurocomputing, 2016,173:827-834. |
[7] | XU H T, ZHANG C K, JIANG L, et al. Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional[J]. Applied Mathematical Modelling, 2017,45:955-964. |
[8] | SHAO H Y, ZHANG Z Q. Delay-dependent state feedback stabilization for a networked control model with two additive input delays[J]. Applied Mathematics and Computation, 2015,265:748-758. |
[9] | HUI J J, KONG X Y, ZHANG H X, et al. Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations[J]. Journal of Computational and Applied Mathematics, 2015,281:74-81. |
[10] | ZHANG Z Y, LIN C, CHEN B. Complete LKF approach to stabilization for linear systems with time-varying input delay[J]. Journal of the Franklin Institute, 2015,352(6):2425-2440. |
[11] | DING L M, HE Y, WU M, et al. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems[J]. IET Control Theory and Applications, 2015,9(14):2180-2187. |
[12] | 张涛, 邵诚, 崔艳秋. 区间时变时滞系统的时滞相关稳定性分析[J]. 电光与控制, 2015,22(1):45-47. |
ZHANG Tao, SHAO Cheng, CUI Yanqiu. Research on delay-dependent stability for systems with interval time-varying delay[J]. Electronics Optics & Control, 2015,22(1):45-47. | |
[13] | DAI L Y. Singular control systems[M]. Berlin/Heidelberg: Springer-Verlag, 1989. |
[14] | XU S Y, VAN DOOREN P, STEFAN R, et al. Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J]. IEEE Transactions on Automatic Control, 2002,47(7):1122-1128. |
[15] | DING Y C, ZHONG S M, CHEN W F. A delay-range-dependent uniformly asymptotic stability criterion for a class of nonlinear singular systems[J]. Nonlinear Analysis: Real World Applications, 2011,12(2):1152-1162. |
[16] | JIAO J M. Delay-dependent stability criteria for singular systems with interval time-varying delay[J]. Mathematical Problems in Engineering, 2012,2012:1-16. |
[17] | 龚冠桦, 赵南, 刘臻臻, 等. 基于Park积分不等式线性时滞广义系统稳定性分析[J]. 青岛大学学报(工程技术版), 2017,32(2):17-21. |
GONG Guanhua, ZHAO Nan, LIU Zhenzhen, et al. New stability analysis of linear singular systems with time delays based on park’s integral inequality[J]. Journal of Qingdao University (Engineering & Technology Edition), 2017,32(2):17-21. | |
[18] | 马跃超, 张雨桐, 付磊. 奇异时滞系统的量化容错控制[J]. 郑州大学学报(理学版), 2019,51(4):110-115. |
MA Yuechao, ZHANG Yutong, FU Lei. Quantized and fault-tolerant control for singular time-delay systems[J]. Journal of Zhengzhou University (Natural Science Edition), 2019,51(4):110-115. | |
[19] | PARK M, KWON O, PARK J H, et al. Stability of time-delay systems via Wirtinger-based double integral inequality[J]. Automatica, 2015,55:204-208. |
[20] | 李郅辰. 基于积分不等式的时滞系统稳定性分析和控制[D]. 北京: 华北电力大学, 2017. |
LI Zhichen. Stability analysis and control for time-delay systems based on integral inequalities[D]. Beijing: North China Electric Power University, 2017. |
[1] | 毛营忠, 冯智勇, 郭会茹. 考虑多性能约束的车辆主动前轮转向静态输出反馈控制[J]. 上海交通大学学报, 2022, 56(2): 156-164. |
[2] | 杨庶, 钱云霄, 杨婷. 高超声速飞行器线性变参数一体化式控制律设计[J]. 上海交通大学学报, 2022, 56(11): 1427-1437. |
[3] | 罗旭1,张淦胜2,谢巍2. Buck变换器线性参数变化模型的增益调度控制[J]. 上海交通大学学报(自然版), 2017, 51(6): 698-703. |
[4] | 刘芬,陈丽,段登平. 多螺旋桨浮空器的抗饱和控制器设计[J]. 上海交通大学学报(自然版), 2017, 51(2): 157-. |
[5] | 马涌泉,邱洪兴. 大跨越输电塔线体系风振控制新策略[J]. 上海交通大学学报(自然版), 2014, 48(12): 1751-1759. |
[6] | 詹世涛1,闫维新1,付庄1,2,潘根1,于锦江3,赵言正1. 二轴框架视线指向系统的凸优化反馈镇定[J]. 上海交通大学学报(自然版), 2013, 47(08): 1312-1318. |
[7] | 王 建 宏 . 故障估计下子空间预测控制的快速梯度算法[J]. 上海交通大学学报(自然版), 2013, 47(07): 1015-1021. |
[8] | 王建宏, 朱永红, 肖绚. 约束闭环系统的虚拟参考反馈校正控制 [J]. 上海交通大学学报(自然版), 2012, 46(09): 1398-1405. |
[9] | 刘国权1, 杨先一1, 柴毅1, 付伟1, 冯伟2, 时光1. 随机中立型时滞神经网络的全局渐近稳定性判据[J]. 上海交通大学学报(自然版), 2011, 45(08): 1151-1157. |
[10] | 董学平, 苏瑜田. 一类不确定线性切换系统的满意控制[J]. 上海交通大学学报(自然版), 2011, 45(08): 1196-1201. |
[11] | 杨瑜. 一类具有时滞的HIV-1感染模型[J]. 上海交通大学学报(自然版), 2010, 44(06): 855-0858. |
[12] | 吴军生,翁正新,田作华,施颂椒. 一种变时滞不确定系统鲁棒可靠控制的线性矩阵不等式方法[J]. 上海交通大学学报(自然版), 2008, 42(10): 1712-1716. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||