[1]刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述 [J]. 仪器仪表学报, 2015, 36(1): 1-16.
LIU Datong, ZHOU Jianbao, GUO Limeng, et al. Survey on lithium-ion battery health assessment and cycle life estimation [J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 1-16.
[2]罗伟林, 张立强, 吕超, 等. 锂离子电池寿命预测国外研究现状综述 [J]. 电源学报, 2013, 11(1): 140-144.
LUO Weilin, ZHANG Liqiang, LV Chao, et al. Review on foreign status of life prediction of lithium-ion batteries [J]. Journal of Power Supply, 2013, 11(1): 140-144.
[3]CHAO L, LAI Q, GE T, et al. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework [J]. Energy, 2017, 120: 975-984.
[4]HU X, LI S, PENG H. A comparative study of equivalent circuit models for Li-ion batteries [J]. Journal of Power Sources, 2012, 198: 359-367.
[5]胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述 [J]. 机械工程学报, 2017, 53(16): 20-31.
HU Xiaosong, TANG Xiaolin. Review of modeling techniques for lithium-ion traction batteries in electric vehicles [J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31.
[6]SAHA B, GOEBEL K, POLL S, et al. Prognostics methods for battery health monitoring using a Baye-sian framework [J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291-296.
[7]WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks [J]. Applied Energy, 2016, 173: 134-140.
[8]LIU D T, ZHOU J B, LIAO H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(6): 915-928.
[9]ZHOU Y P, HUANG M H, CHEN Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction [J]. Journal of Power Sources, 2016, 321: 1-10.
[10]LI J F, WANG L X, LYU C, et al. A method of remaining capacity estimation for lithium-ion battery [J]. Advances in Mechanical Engineering, 2013, 5: 154831.
[11]HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling [J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2645-2656.
[12]何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述 [J]. 控制与决策, 2013, 28(8): 1121-1129.
HE Zhikun, LIU Guangbin, ZHAO Xijing, et al. Overview of Gaussian process regression [J]. Control and Decision, 2013, 28(8): 1121-1129.
[13]李翔宇, 高宪文, 李琨, 等. 鱼群算法优化组合核函数GPR的油井动液面预测 [J]. 东北大学学报(自然科学版), 2017, 38(1): 11-15.
LI Xiangyu, GAO Xianwen, LI Kun, et al. Prediction for dynamic fluid level of oil well based on GPR with AFSA optimized combined kernel function [J]. Journal of Northeastern University (Natural Science), 2017, 38(1): 11-15.
[14]徐冲, 刘保国, 刘开云, 等. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J]. 岩土力学, 2011, 32(6): 1669-1675.
XU Chong, LIU Baoguo, LIU Kaiyun, et al. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR [J]. Rock and Soil Mechanics, 2011, 32(6): 1669-1675.
[15]LIU D T, PANG J Y, ZHOU J B, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression [J]. Microelectronics Reliability, 2013, 53(6): 832-839.
[16]宋云雪, 陈金. 基于广义线性回归模型的飞机维修单位风险管理研究[J]. 科技通报, 2016, 32(1): 215-219.
SONG Yunxue, CHEN Jin. Research of aircraft main-tenance unit risk management based on the generalized linear regression model [J]. Bulletin of Science and Technology, 2016, 32(1): 215-219. |