[1]刘威, 张东霞, 王新迎, 等. 基于随机矩阵理论的电力系统暂态稳定性分析[J]. 中国电机工程学报, 2016, 36(18): 4854-4863.
LIU Wei, ZHANG Dongxia, WANG Xinying, et al. Power system transient stability analysis based on random matrix theory [J]. Proceedings of the CSEE, 2016, 36(18): 4854-4863.
[2]吴贵辉. 大力发展清洁能源推进电力可持续发展[J]. 电网与清洁能源, 2008, 24(3): 1-2.
WU Guihui. Vigorous development of renewable energy promote continuous development of electricity [J]. Power System and Clean Energy, 2008, 24(3): 1-2.
[3]徐心怡, 贺兴, 艾芊, 等. 基于随机矩阵理论的配电网运行状态相关性分析方法[J]. 电网技术, 2016, 40(3): 781-790.
XU Xinyi, HE Xing, AI Qian, et al. A correlation analysis method for operation status of distribution network based on random matrix theory [J]. Power System Technology, 2016, 40(3): 781-790.
[4]KATIRAEI F, IRAVANI R, HATZIARGYRIOU N, et al. Microgrids management [J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65.
[5]吴茜, 张东霞, 刘道伟, 等. 基于随机矩阵理论的电网静态稳定态势评估方法[J]. 中国电机工程学报, 2016, 36(20): 5414-5420.
WU Qian, ZHANG Dongxia, LIU Daowei, et al. A method for power system steady stability situation assessment based on random matrix theory [J]. Proceedings of the CSEE, 2016, 36(20): 5414-5420.
[6]薛禹胜, 赖业宁. 大能源思维与大数据思维的融合(一)大数据与电力大数据[J]. 电力系统自动化, 2016, 40(1): 1-8.
XUE Yusheng, LAI Yening. Integration of macro energy thinking and big data thinking. Part One. Big data and power big data [J]. Automation of Electric Power Systems, 2016, 40(1): 1-8.
[7]薛禹胜, 赖业宁. 大能源思维与大数据思维的融合(二)应用及探索[J]. 电力系统自动化, 2016, 40(8): 1-13.
XUE Yusheng, LAI Yening. Integration of macro energy thinking and big data thinking. Part Two. Applications and explorations [J]. Automation of Electric Power Systems, 2016, 40(8): 1-13.
[8]刘天琪. 现代电力系统分析: 理论与方法[M]. 第二版. 北京: 中国电力出版社, 2016.
LIU Tianqi. Modern power system analysis: Theory and method [M]. 2nd ed. Beijing: China Electric Power Press, 2016.
[9]李杨. 基于广域动态信息的电力系统暂态稳定评估研究[D]. 北京: 华北电力大学, 2014.
LI Yang. Research on transient stability assessment of power systems based on wide-area dynamic information [D]. Beijing: North China Electric Power University, 2014.
[10]仲悟之, 汤涌. 电力系统微分代数方程模型的暂态电压稳定性分析[J]. 中国电机工程学报, 2010, 30(25): 10-16.
ZHONG Wuzhi, TANG Yong. Transient voltage stability analysis of differential-algebra equation in power system [J]. Proceedings of the CSEE, 2014, 30(25): 10-16.
[11]刘振亚. 智能电网技术[M]. 北京: 中国电力出版社, 2010.
LIU Zhenya. Smart grid technology [M]. Beijing: China Electric Power Press, 2010.
[12]YIN J, SHARMA P, GORTON I, et al. Large-scale data challenges in future power grids [C]//7th International Symposium on Service-Oriented System Engineering. Redwood City, CA, USA: IEEE, 2013: 324-328.
[13]侯子良, 潘钢. 建设数字化电厂示范工程加快火电厂信息化进程[J]. 中国电力, 2005, 38(2): 78-80.
HOU Ziliang, PAN Gang. Constructing demonstration projects of digitized power plant to speed up the informatization process in fossil-fired power plants [J]. Electric Power, 2005, 38(2): 78-80.
[14]HE X, AI Q, QIU R C, et al. A big data architecture design for smart grids based on random matrix theory [J]. IEEE Transactions on Smart Grid, 2017, 8(2): 674-686.
[15]QIU R C, HU Z, LI H, et al. Cognitive radio communications and networking: Principles and practice [M]. New York: John Wiley and Sons, 2012.
[16]李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9.
LI Han, XIAO Deyun. Survey on data driven fault diagnosis methods [J]. Control and Decision, 2011, 26(1): 1-9.
[17]于之虹, 黄彦浩, 鲁广明, 等. 基于时间序列关联分析的稳定运行规则提取方法[J]. 中国电机工程学报, 2015, 35(3): 519-526.
YU Zhihong, HUANG Yanhao, LU Guangming, et al. A time series associative classification method for the operation rule extracting of transient stability [J]. Proceedings of the CSEE, 2015, 35(3): 519-526.
[18]PASSARO M C, DA SILVA A P A, LIMA A C S. Preventive control stability via neural network sensitivity [J]. IEEE Transactions on Power Systems, 2014, 29(6): 2846-2853.
[19]周艳真, 吴俊勇, 于之虹, 等. 基于转子角轨迹簇特征的电力系统暂态稳定评估[J]. 电网技术, 2016, 40(5): 1482-1487.
ZHOU Yanzhen, WU Junyong, YU Zhihong, et al. Power system transient stability assessment based on cluster features of rotor angle trajectories [J]. Power System Technology, 2016, 40(5): 1482-1487.
[20]冀鲁豫, 吴俊勇, 周艳真, 等. 基于WAMS 受扰电压轨迹簇特征的电力系统暂态稳定性预测[J]. 高电压技术, 2015, 41(3): 807-814.
JI Luyu, WU Junyong, ZHOU Yanzhen, et al. Transient stability prediction of power system based on WAMS characteristic of perturbed voltage trajectory clusters [J]. High Voltage Engineering, 2015, 41(3): 807-814.
[21]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks [C]//International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004: 985-990.
[22]HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
[23]李代高. 矩阵理论及其应用[M]. 重庆: 重庆大学出版社, 1989.
LI Daigao. Matrix theory and its application [M]. Chongqing: Chongqing University Press, 1989.
[24]叶圣永. 基于机器学习的电力系统暂态稳定评估研究[D]. 成都: 西南交通大学, 2010.
YE Shengyong. Study on power systems transient stability assessment based on machine learning me-thod [D]. Chengdu: Southwest Jiaotong University, 2010.
[25]王同文, 管霖, 章小强, 等. 基于扩展k阶近邻法的电力系统稳定评估新算法[J]. 电力系统自动化, 2008, 32(3): 18-21.
WANG Tongwen, GUAN Lin, ZHANG Xiaoqiang, et al. A new method for power system stability assessment based on extended k-nearest neighbor classifier [J]. Automation of Electric Power Systems, 2008, 32(3): 18-21.
[26]李扬, 顾雪平. 基于改进最大相关最小冗余判据的暂态稳定评估特征选择[J]. 中国电机工程学报, 2013, 33(34): 179-186.
LI Yang, GU Xueping. Feature selection for tran-sient stability assessment based on improved maximal relevance and minimal redundancy criterion [J]. Proceedings of the CSEE, 2013, 33(34): 179-186.
[27]GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines [J]. Machine Learning, 2002, 46(1/2/3): 389-422.
[28]周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
ZHOU Zhihua. Machine learning [M]. Beijing: Tsinghua University Press, 2016.
[29]GOMEZ F R, RAJAPAKSE A D, ANNAKKAGE U D, et al. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements [J]. IEEE Transactions on Power Systems, 2011, 26(3): 1474-1483. |