[1]JOSHI S, TEWARI A, JOSHI S S. Microstructural characterization of chip segmentation under different machining environments in orthogonal machining of Ti6Al4V [J]. Journal of Engineering Materials and Technology, 2015, 137(1): 011005.
[2]SU G S, LIU Z Q. An experimental study on influences of material brittleness on chip morphology [J]. International Journal of Advanced Manufacturing Technology, 2010, 51(1/2/3/4): 87-92.
[3]ZHANG X P, SHIVPURI R, SRIVASTAVA A K. A new microstructure-sensitive flow stress model for the high-speed machining of titanium alloy Ti-6Al-4V [J]. Journal of Manufacturing Science and Engineering, 2017, 139(5): 051006.
[4]CHEN G, REN C Z, YANG X Y, et al. Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model [J]. International Journal of Advanced Manufacturing Technology, 2011, 56(9/10/11/12): 1027-1038.
[5]LIU G R, LIU M B.光滑流体动力学——一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫,译. 长沙: 湖南大学出版社, 2005.
LIU G R, LIU M B. Smoothed particle hydrodyna-mics: A meshfree particle method[M]. HAN Xu, YANG Gang, QIANG Hongfu, trans. Changsha: Hunan University Press, 2005.
[6]LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82(12): 1013-1024.
[7]YANG X F, DAI L, KONG S C. Simulation of liquid drop impact on dry and wet surfaces using SPH me-thod [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2393-2399.
[8]强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用[J]. 爆炸与冲击, 2017, 37(6): 990-1000.
QIANG Hongfu, FAN Shujia, CHEN Fuzhen, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hyperrelocity impact of a projectile on a thin plate[J]. Explosion and Shock Waves, 2017, 37(6): 990-1000.
[9]欧阳义平, 杨启. SPH法数值仿真三维切削破岩和切削力估算[J]. 上海交通大学学报, 2016, 50(1): 84-90.
OUYANG Yiping, YANG Qi. Numerical simulation of rock cutting in 3D with SPH method and estimation of cutting force[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1): 84-90.
[10]CHEN R, SHAO S, LIU X, et al. Applications of shallow water SPH model in mountainous rivers[J]. Journal of Applied Fluid Mechanics, 2015, 8(4): 863-870.
[11]BOUSCASSE B, COLAGROSSI A, MARRONE S, et al. SPH modelling of viscous flow past a circular cylinder interacting with a free surface[J]. Computers & Fluids, 2017, 146: 190-212.
[12]FERRAND M, JOLY A, KASSIOTIS C, et al. Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D[J]. Computer Physics Communications, 2017, 210: 29-44.
[13]DONG X W, LIU G R, LI Z L, et al. A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles [J]. Tribology International, 2016, 95: 267-278.
[14]JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//7th International Symposium on Ballistics. The Hague, Netherlands: International Ballistics Committe, 1983: 541-547.
[15]JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[16]NIU W L, MO R, LIU G R, et al. Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(1/2/3/4): 905-919.
[17]CALAMAZ M, COUPARD D, GIROT F. Numerical simulation of titanium alloy dry machining with a strain softening constitutive law[J]. Machining Science and Technology, 2010, 14(2): 244-257.
[18]DUCOBU F, RIVIRE-LORPHVRE E, FILIPPI E. Numerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cutting [J]. International Journal of Mechanical Sciences, 2014, 81: 77-87.
[19]YAICH M, AYED Y, BOUAZIZ Z, et al. Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: Application to the Ti6Al4V[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1/2/3/4): 283-303.
[20]HE L J, SU H H, XU J H, et al. Simulation analysis of the influence of dynamic flow stress behavior on chip formation[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5/6/7/8): 2301-2313. |