[1] |
尹刚, 张英堂, 李志宁, 等. 运用在线贯序极限学习机的故障诊断方法[J].振动、测试与诊断, 2013, 33(2): 325-329.
|
|
YIN Gang, ZHANG Yingtang, LI Zhining, et al. Fault diagnosis based on online sequential extreme learning machine[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 325-329.
|
[2] |
MEHDIZADEH M, MACNISH C, KHAN R N, et al. Semi-supervised neighborhood preserving discri-minate embedding: A semi-supervised subspace learning algorithm[J]. Lecture Notes in Computer Science, 2011, 6494: 199-212.
|
[3] |
HONEINE P. Analyzing sparse dictionaries for online learning with kernels[J]. IEEE Transactions on Signal Processing, 2015, 63(23): 6343-6353.
|
[4] |
LIU W F, PARK I I, PRINCIPE J C. An information theoretic approach of designing sparse kernel adaptive filters[J]. IEEE Transactions on Neural Networks, 2009, 20(12): 1950-1961.
|
[5] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and application[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
[6] |
SIMONE S, DANILO C, MICHELE S, et al. Online sequential extreme learning machine with kernel[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 2214-2220.
|
[7] |
ZHOU X R, WANG C S. Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Neurocomputing, 2016, 174: 1147-1155.
|
[8] |
GUO L, HAO J H, LIU M. An incremental extreme learning machine for online sequential learning problem[J]. Neurocomputing, 2014, 128: 50-58.
|
[9] |
JONES M C, HENDERSON D A. Maximum likelihood kernel density estimation: on the potential of convolution sieves[J]. Computational Statistics & Data Analysis, 2009, 53(10): 3726-3733.
|
[10] |
尹刚, 张英堂, 李志宁, 等. 基于MSPCA的缸盖振动信号特征增强方法研究[J]. 振动与冲击, 2013, 32(6): 143-147.
|
|
YIN Gang, ZHANG Yingtang, LI Zhining, et al. Fault feature enhancement method for cylinder head vibration signal based on multiscale principal component analysis[J]. Journal of Vibration and Shock, 2013, 32(6): 143-147.
|