上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (1): 93-99.doi: 10.16183/j.cnki.jsjtu.2019.01.013
荣富,廖晨聪,童大贵,周香莲
出版日期:
2019-01-28
发布日期:
2019-01-28
通讯作者:
廖晨聪,男,助理研究员,电话(Tel.):021-34204883;E-mail: billaday@sjtu.edu.cn.
作者简介:
荣富(1994-),男,安徽省铜陵市人,硕士生,研究方向为海洋岩土工程. E-mail: rongfu16@sjtu.edu.cn.
基金资助:
RONG Fu,LIAO Chencong,TONG Dagui,ZHOU Xianglian
Online:
2019-01-28
Published:
2019-01-28
摘要: 为探究波浪荷载作用下渗透率各向异性的海床的瞬态液化问题,分别以雷诺平均Navier-Stokes(RANS)方程和Biot多孔弹性方程作为波浪运动和海床响应的控制方程,采用LSM (Level Set Method)法对自由表面进行追踪,以保证波浪运动模拟的准确性,并建立了波浪-海床相互作用的二维耦合数值模型.在验证数值模型合理性的基础上,进一步分析了波浪参数、海床土体的饱和度和渗透性对海床瞬态液化的影响.结果表明:波浪参数和海床土体饱和度对海床瞬态液化的影响显著;海床的瞬态最大液化深度随着波浪的高度、周期的增大而增加,随着海床土体饱和度的增大而减小;相比于海床土体的水平方向渗透系数,海床的瞬态最大液化深度对垂直方向渗透系数的变化更加敏感.
中图分类号:
荣富, 廖晨聪, 童大贵, 周香莲. 波浪作用下渗透率各向异性的海床液化分析[J]. 上海交通大学学报, 2019, 53(1): 93-99.
RONG Fu, LIAO Chencong, TONG Dagui, ZHOU Xianglian. Analysis of Wave-Induced Liquefaction of Seabed with Variation in Permeability Anisotropy[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 93-99.
[1]BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. [2]JENG D S. Porous models for wave-seabed interactions[M]. Heideberg: Springer, 2013. [3]JENG D S, LIN Y S. Finite element modeling for water waves-soil interaction[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(5): 283-300. [4]JENG D S, YE J H, ZHANG J S, et al. An integrated model for the wave-induced seabed response around marine structures: Model verifications and applications[J]. Coastal Engineering, 2013, 72(2): 1-19. [5]YE J H, JENG D S, WANG R, et al. A 3-D semi-coupled numerical model for fluid-structures-seabed-interaction (FSSI-CAS 3D): Model and verification[J]. Journal of Fluids and Structures, 2013, 40(7): 148-162. [6]陈海锋. 波浪作用下的三维海床响应及液化分析[D]. 天津: 天津大学, 2009. CHEN Haifeng. Study on wave-induced response of progresssive pore pressure and liquefaction in seabed[D]. Tianjin: Tianjin University, 2009. [7]LIAO C C, TONG D G, CHEN L H. Pore pressure distribution and momentary liquefaction in vicinity of impermeable slope-type breakwater head[J]. Applied Ocean Research, 2018, 78: 290-306. [8]LIAO C C, TONG D G, JENG D S, et al. Numerical study for wave-induced oscillatory pore pressures and liquefaction around impermeable slope breakwater heads[J]. Ocean Engineering, 2018, 157: 364-375. [9]MADSEN O S. Wave-induced pore pressures and effective stress in a porous bed[J]. Geotechnique, 1978, 28(4): 377-393. [10]YAMAMOTO T, SELLMEIHER H L, HIJUM E V. On the response of a porous-elastic bed to water waves[J]. Journal of Fluid Mechanics, 1978, 87(1): 193-206. [11]MEI C C, FODA M A. Wave-induced responses in a fluid-filled poro-elastic solid with a free surface—A boundary layer theory[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 66(3): 597-631. [12]王栋, 栾茂田, 郭莹. 波浪作用下海床动力反应有限元数值模拟与液化分析[J]. 大连理工大学学报, 2001, 41(2): 216-222. WANG Dong, LUAN Maotian, GUO Ying. FEM-based numerical simulation of dynamic response and liquefaction analysis of seabed under wave-induced loading[J]. Journal of Dalian University of Technology, 2001, 41(2): 216-222. [13]ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. [14]SAKAI T, HANTAAKA K, MASE H. Wave-induced effective stress in seabed and its momentary liquefaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(2): 202-206. [15]LIN Y S, JENG D S. Short-crested wave-induced liquefaction in porous seabed[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 481-494. [16]SUZUKI K, TAKAHASHI S. Liquefaction of loosely deposited sandbed behind a breakwater due to wave overtopping[C]∥Coastal Structures 2003. Portland, USA: ASCE, 2003: 656-662. [17]黄光爵, 郑永来, 武伯弢. 波浪作用下可液化海床最大液化深度[J]. 地震工程与工程振动, 2012, 32(5): 146-151. HUANG Guangjue, ZHENG Yonglai, WU Botao. The maximum liquefaction depth of liquefiable seabed under loading[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(5): 146-151. [18]JENG D S, SEYMOUR B R. Response in seabed of finite depth with variable permeability[J]. Journal of Geotechnical and Geoenvironment Engineering, 1997, 123(10): 902-911. [19]张金凤, 张庆河, 秦崇仁. 波浪作用下非均质各向异性海床响应的数值模拟[J]. 天津大学学报, 2006, 39(2): 159-164. ZHANG Jinfeng, ZHANG Qinghe, QIN Chongren. Numerical simulation of wave-induced response of inhomogeneous and anisotropic seabed[J]. Journal of Tianjin University, 2006, 39(2): 159-164. [20]WEN F, WANG J H. Response of layered seabed under wave and current loading[J]. Journal of Coastal Research, 2015, 31(4): 907-919. [21]LIU B, JENG D S, YE G L, et al. Laboratory study for pore pressures in sandy deposit under wave loading[J]. Ocean Engineering, 2015, 106: 207-219. [22]HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785-807. [23]CHOWDHURY B, DASARI G R, NOGAMI T. Laboratory study of liquefaction due to wave-seabed interaction[J]. Journal of Geotechnical and Geoenvi-ronmental Engineering, 2006, 132(7): 842-851. |
[1] | 刘浩, 孙建红, 孙智, 陶洋, 王德臣, 刘光远. 波浪条件下地效翼型气动力的环量控制研究[J]. 上海交通大学学报, 2022, 56(8): 1101-1110. |
[2] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[3] | 秦艺超, 黄礼敏, 王骁, 马学文, 段文洋, 郝伟. 基于人工神经网络的自航浮标测波方法可行性[J]. 上海交通大学学报, 2022, 56(4): 498-505. |
[4] | 丁明, 孟帅, 王书恒, 夏玺. 六自由度波浪补偿平台的神经网络自适应反馈线性化控制[J]. 上海交通大学学报, 2022, 56(2): 165-172. |
[5] | 刘晨晨, 张琪, 李明广, 周香莲, 黎蔚杰. 波浪与地震荷载共同作用下桩的动力响应[J]. 上海交通大学学报, 2021, 55(6): 638-644. |
[6] | 张琪, 周香莲, 叶冠林. 波浪荷载引起不同埋深管线周围海床响应和液化分析[J]. 上海交通大学学报, 2021, 55(5): 489-496. |
[7] | 金小凯, 陈锦剑, 廖晨聪. 波浪荷载对单桩承载力影响的水槽模拟试验研究[J]. 上海交通大学学报, 2021, 55(4): 365-371. |
[8] | 丁俊杰,马宁,顾解忡. 循环水槽多层孔板消波装置开发及消波特性数值模拟[J]. 上海交通大学学报, 2020, 54(1): 52-59. |
[9] | 马哲,周婷,孙家文,房克照,翟钢军. 基于改进质量源造波方法的非线性波数值模拟[J]. 上海交通大学学报, 2020, 54(1): 60-68. |
[10] | 潘佳禾,廖晨聪,陈锦剑. 孤立波作用下埋管斜坡海床及海底管道的响应分析[J]. 上海交通大学学报, 2019, 53(8): 898-906. |
[11] | 郭春雨1,刘恬1,赵庆新1,郝浩浩2. 短波中标称伴流场特性分析[J]. 上海交通大学学报(自然版), 2019, 53(2): 170-178. |
[12] | 毛立夫,李英辉,易宏. 斜支柱小水线面双体船水动力性能的数值研究[J]. 上海交通大学学报, 2019, 53(12): 1428-1439. |
[13] | 张忆州a, 廖晨聪a, b, 陈锦剑a, b. 椭圆余弦波作用下考虑桩身振动的桩-土相互作用[J]. 上海交通大学学报, 2019, 53(1): 85-92. |
[14] | 柏君励,马宁,顾解忡. 波流对不同淹没深度水平圆柱的载荷分析[J]. 上海交通大学学报(自然版), 2018, 52(8): 938-945. |
[15] | 吴忻一, 崔锦, 聂焱, 霍发力, 王宁. 水平波浪冲击载荷对柱稳式平台局部结构设计的影响[J]. 海洋工程装备与技术, 2018, 5(4): 259-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||