上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (1): 105-110.doi: 10.16183/j.cnki.jsjtu.2019.01.015
刘若凡1,于忠奇1,赵亦希1,EVSYUKOV S A2
出版日期:
2019-01-28
发布日期:
2019-01-28
通讯作者:
于忠奇,男,副教授,电话(Tel.):021-34206785;E-mail:yuzhq@sjtu.edu.cn.
作者简介:
刘若凡(1993-),男,内蒙古赤峰市人,硕士生,主要从事铝合金旋压性能与工艺研究.
基金资助:
LIU Ruofan,YU Zhongqi,ZHAO Yixi,EVSYUKOV S A
Online:
2019-01-28
Published:
2019-01-28
摘要: 为了提高铝合金2024-O的旋压成形性能,通过试验研究了2种法兰约束(单边和双边)条件下杯形件的极限旋压比,并通过数值模拟研究了单边和双边法兰约束旋压成形中工艺参数对构件厚度的影响.结果表明:相对于传统的自由边旋压成形工艺,法兰约束旋压成形工艺可以提高极限旋压比,并且双边法兰约束比单边法兰约束的效果更佳;在相同的工艺条件下,双边法兰约束的构件壁厚比单边法兰约束的构件壁厚更均匀;在法兰约束的旋压成形中,板料与托辊(或旋轮端面)间的摩擦系数对构件壁厚几乎没有影响;随着旋轮端面与托辊的约束界面间隙增加,双边法兰约束的构件壁厚先减小,而后增大并趋于稳定.
中图分类号:
刘若凡, 于忠奇, 赵亦希, EVSYUKOV S A. 法兰约束条件下铝合金杯形件的旋压成形性能[J]. 上海交通大学学报, 2019, 53(1): 105-110.
LIU Ruofan, YU Zhongqi, ZHAO Yixi, EVSYUKOV S A. Formability of Flange Constraint Spinning for Aluminum Cup Part[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 105-110.
[1]XIA Q, SHIMA S, KOTERA H, et al. A study of the one-path deep drawing spinning of cups [J]. Journal of Materials Processing Technology, 2005, 159(3): 397-400. [2]XIA Q X, ZHANG S B, XIAO-YU W U, et al. Numerical simulation and experimental investigation on one-path deep drawing spinning of conical part [J]. Forging & Stamping Technology, 2010, 35(1): 44-48. [3]杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10): 2534-2550. YANG He, ZHAN Mei, LI Tian, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10): 2534-2550. [4]吴统超, 詹梅, 蒋华兵, 等. 旋压间隙对大型复杂薄壁壳体多道次旋压中第二道次成形质量的影响[J]. 西北工业大学学报, 2011, 29(1): 74-81. WU Tongchao, ZHAN Mei, JIANG Huabing, et al. Influence of clearance for forming quality of second pass for large complicated thin-walled shells in multi-pass spinning [J]. Journal of Northweatern Polytechnical University, 2011, 29(1): 74-81. [5]宋晓飞, 詹梅, 蒋华兵, 等. 铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理[J]. 塑性工程学报, 2013, 20(1): 31-36. SONG Xiaofei, ZHAN Mei, JIANG Huabing, et al. Forming mechanism of defects in spinning of large complicated thin-walled aluminum alloy shells [J]. Journal of Plasticity Engineering, 2013, 20(1): 31-36. [6]WANG L, LONG H. Investigation of material deformation in multi-pass conventional metal spinning [J]. Materials & Design, 2011, 32(5): 2891-2899. [7]WANG L, LONG H. A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning[J]. Journal of Materials Processing Technology, 2011, 211(12): 2140-2151. [8]WANG L. Analysis of material deformation and wrinkling failure in conventional metal spinning process [D]. England: Durham University, 2012. [9]KONG Q S, YU Z Q, ZHAO Y X, et al. Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part[J]. Journal of Materials Processing Technology, 2016, 246: 56-68. [10]史敏, 赵亦希, 孔庆帅, 等. 薄壁铝合金封头挡板辅助旋压成形方法[J]. 上海交通大学学报, 2015, 49(10): 1497-1503. SHI Min, ZHAO Yixi, KONG Qingshuai, et al. Baffle-assistan new spinning process for thin-walled aluminum alloy vessel head [J]. Journal of Shanghai Jiao Tong University, 2015, 49(10): 1497-1503. [11]AHMED K I, GADALA M S, EL-SEBAIE M G. Deep spinning of sheet metals [J]. International Journal of Machine Tools and Manufacture, 2015, 97: 72-85. [12]詹梅, 李虎, 杨合, 等. 大型复杂薄壁壳体多道次旋压过程中的壁厚变化[J]. 塑性工程学报, 2008, 15(2): 115-121. ZHAN Mei, LI Hu, YANG He, et al. Thickness variation in Multi-pass spinning process of large-sized complicated thin-walled shells [J]. Journal of Plasti-city Engineering, 2008, 15(2): 115-121. [13]LONG H, HAMILTON S. Simulation of effects of material deformation on thickness variation in conventional spinning [C]∥International Conference on Technology of Plasticity. South Korea: ICTP, 2008. [14]AUER C, ERDBRGGE M, GBEL R. Comparison of multivariate methods for robust parameter design in sheet metal spinning [J]. Applied Stochastic Models in Business and Industry, 2004, 20(3): 201-218. [15]RAZAVI H, BIGLARI F R, TORABKHANI A. Study of strains distribution in spinning process using FE simulation and experimental work [C]∥Tehran International Congress on Manufacturing Engineering. Tehran, Iran: TICME, 2005. [16]高晶, 刘克素, 于忠奇, 等. 双相钢板成形界面压力数值仿真及对板料表面损伤影响[J]. 上海交通大学学报, 2013, 47(5): 770-774 GAO Jing, LIU Kesu, YU Zhongqi, et al. Numerical analysis for contact pressure and surface damage in dual-phase steel sheet stamping [J]. Joural of Shanghai Jiao Tong University, 2013, 47(5): 770-774. |
[1] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[2] | 李元辉, 李建军, 王顺超, 张珑耀, 朱文峰. 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022, 56(4): 532-542. |
[3] | 周宇, 赵勇, 于忠奇, 赵亦希. 交叉内筋薄壁筒体错距旋压成形数值仿真[J]. 上海交通大学学报, 2022, 56(1): 62-69. |
[4] | 何利华, 潘建峰, 倪敬, 冯凯, 崔智. 压铸铝合金用铣刀表面微织构及切削特性研究[J]. 上海交通大学学报, 2021, 55(6): 750-756. |
[5] | 杜慧敏,罗震,敖三三,张禹,郝志壮. 5052铝合金电阻点焊电极形状对电极寿命的影响[J]. 上海交通大学学报, 2019, 53(6): 708-712. |
[6] | 杜陈阳,孔庆帅,赵亦希,于忠奇. 薄壁球面构件普旋法兰起皱预测方法评价[J]. 上海交通大学学报(自然版), 2019, 53(4): 431-437. |
[7] | 侯才生,刘涛. 基于Frenet标架的变截面涡旋型线构建与性能研究[J]. 上海交通大学学报, 2019, 53(12): 1495-1501. |
[8] | 李雪龙,于忠奇,赵亦希,EVSYUKOV S A. 多道次普旋预成形阶段法兰起皱预测[J]. 上海交通大学学报, 2019, 53(11): 1375-1380. |
[9] | 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能[J]. 上海交通大学学报, 2019, 53(11): 1381-1388. |
[10] | 王永光1,吴中华2,赵永武2,陈瑶1,刘萍2,陆小龙1,朱玉广1. 超声波协同作用下非离子表面活性剂 对铝合金抛光后清洗的影响[J]. 上海交通大学学报(自然版), 2018, 52(5): 582-586. |
[11] | 杨珂1,赵亦希1,冯昌文2,余志华2. 铝合金模压包边工艺尺寸设计方法[J]. 上海交通大学学报(自然版), 2018, 52(2): 182-187. |
[12] | 黄岩,陆彬,陈军. 多道次非轴对称旋压成形轨迹参数化设计方法[J]. 上海交通大学学报(自然版), 2017, 51(11): 1328-1333. |
[13] | 黄尊月,罗震,张禹,姚杞. 铝合金激光焊接变形测量[J]. 上海交通大学学报(自然版), 2015, 49(03): 326-328. |
[14] | 沈鸿源1,2,陈华斌2,林涛2,陈善本2. 应用于铝合金焊接中的被动视觉获取[J]. 上海交通大学学报(自然版), 2015, 49(03): 341-343. |
[15] | 路平1a,1b,张云开1a,1b,陈波2. 汽车轮辐错距强力旋压成形的有限元仿真[J]. 上海交通大学学报(自然版), 2015, 49(01): 56-61. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 332
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||