上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (11): 1492-1500.doi: 10.16183/j.cnki.jsjtu.2018.11.011
程池浩1,廖少明1,陈立生2,范明星2,霍晓波3
发布日期:
2025-07-02
通讯作者:
廖少明,男,教授,博士生导师, 电话(Tel.):021-65987571;E-mail: liaosm@126.com.
作者简介:
程池浩(1990-),男,湖北省天门市人,博士生,主要从事盾构隧道及深基坑工程等研究.
基金资助:
CHENG Chihao,LIAO Shaoming,CHEN Lisheng,FAN Mingxing,HUO Xiaobo
Published:
2025-07-02
摘要: 针对某石英含量较高的富水砂砾地层地铁工程进行了系统的土体改良试验,并以室内试验的添加剂配比方案为基础进行了现场掘进应用及施工试验.结果表明:通过土体改良试验得到了最优的室内试验添加剂配比,即在天然含水率条件下泡沫注入比为10%,泥浆注入比为23%~25%;现场施工应密切关注土仓与螺旋输送机的压力平衡关系,并调整添加剂注入量,以达到防止盾构喷涌和控制刀盘载荷的目的,并使得渣土的坍落度和稠度分别保持在20cm和8cm左右.
中图分类号:
程池浩1,廖少明1,陈立生2,范明星2,霍晓波3. 富水石英砂砾层盾构施工的土体改良试验[J]. 上海交通大学学报, 2018, 52(11): 1492-1500.
CHENG Chihao,LIAO Shaoming,CHEN Lisheng,FAN Mingxing,HUO Xiaobo. Experiments of Soil Conditioning for Shield Tunneling in Watery Quartz Sand-Gravel Ground[J]. Journal of Shanghai Jiao Tong University, 2018, 52(11): 1492-1500.
[1]PEILA D. Soil conditioning for EPB shield tunnelling[J]. KSCE Journal of Civil Engineering, 2014, 18(3): 831-836. [2]LIAO S M, LIU J H, WANG R L, et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 454-465. [3]姜厚停, 龚秋明, 杜修力. 卵石地层土压平衡盾构施工土体改良试验研究[J]. 岩土工程学报, 2013, 35(2): 284-292. JIANG Houting, GONG Qiuming, DU Xiuli. Expe-rimental study on soil conditioning in cobble layer by use of earth pressure balanced machine[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 284-292. [4]程池浩, 廖少明, 彭少杰, 等. 沈阳富水砂卵石地层泥水盾构适应性研究[J]. 地下空间与工程学报, 2017, 13(1): 190-196. CHENG Chihao, LIAO Shaoming, PENG Shaojie, et al. Study on ground suitability of slurry shield in water-rich sandy cobble ground in Shenyang[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 190-196. [5]VINAI R, OGGERI C, PEILA D. Soil conditioning of sand for EPB applications: A laboratory research[J]. Tunnelling and Underground Space Technology, 2008, 23(3): 308-317. [6]李培楠, 黄德中, 黄俊, 等. 硬塑高黏度地层盾构施工土体改良试验研究[J]. 同济大学学报(自然科学版), 2016, 44(1): 59-66. LI Peinan, HUANG Dezhong, HUANG Jun, et al. Experimental study on soil conditioning of shield construction in hard-plastic high-viscosity layer[J]. Journal of Tongji University (Natural Science), 2016, 44(1): 59-66. [7]程池浩, 赵国强, 廖少明, 等. 武汉老黏土地层土压盾构适应性研究[J]. 施工技术, 2016, 45(19): 105-109. CHENG Chihao, ZHAO Guoqiang, LIAO Shao-ming, et al. Adaptability study of EPB shield machine in hard clay in Wuhan[J]. Construction Technology, 2016, 45(19): 105-109. [8]魏康林. 土压平衡式盾构施工中“理想状态土体”的探讨[J]. 城市轨道交通研究, 2007, 10(1): 67-70. WEI Kanglin. On the “ideal soil” in the earth pressure balanced shield tunneling[J]. Urban Mass Transit, 2007, 10(1): 67-70. [9]PEILA D, OGGERI C, BORIO L. Using the slump test to assess the behavior of conditioned soil for EPB tunneling[J]. Environmental and Engineering Geoscience, 2009, 15(3): 167-174. [10]QUEBAUD S, SIBAI M, HENRY J P. Use of chemical foam for improvements in drilling by earth-pressure balanced shields in granular soils[J]. Tunnelling & Underground Space Technology, 1998, 13(2): 173-180. [11]PEILA D, OGGERI C, BORIO L. Influence of gra-nulometry, time and temperature on soil conditioning for EPBS applications[C]//ITA-AITES World Tunnel Congress (WTC). Agra, India: ITA-AITES, 2008. [12]MARTINELLI D, PEILA D, CAMPA E. Feasibility study of tar sands conditioning for earth pressure ba-lance tunnelling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 684-690. [13]PEILA D, PICCHIO A, CHIEREGATO A. Earth pressure balance tunnelling in rock masses: Laboratory feasibility study of the conditioning process[J]. Tunnelling and Underground Space Technology, 2013, 35(1): 55-66. [14]SOTIRIS P. Properties of foam/sand mixtures for tunnelling applications[D]. Oxford, England: Department of Engineering Science, University of Oxford, 2001. [15]刘大鹏. 新型泡沫对土压平衡盾构土体改良作用评价[D]. 北京: 中国地质大学(北京)工程技术学院, 2012. LIU Dapeng. The appraisal of improving the soil condition of EPBS with new foam[D]. Beijing: School of Engineering and Technology, China University of Geosciences, 2012. [16]MERRIT T. Conditioning for clay soils for tunnelling machine screw conveyors[D]. Cambridge, England: University of Cambridge, 2004. [17]MIGUEL P. Foam as a soil conditioner in tunnelling: Physical and mechanical properties of conditioned sands[D]. Oxford, England: University of Oxford, 2007. [18]KUSAKABE T, NOMOTO N, IMAMURA N. Geotechnical criteria for selecting mechanized tunnel system and DMM for tunneling[C]//Proceedings of Fourteenth International Conference on Soil Mechanics and Foundation Engineering. Hamburg, Germany: TRIS, 1997: 2439-2440. [19]JANCSECZ S, KRAUSE R, LANGMAACK L. Advantages of soil conditioning in shield tunnelling: Experiences of LRTS Izmir[EB/OL]. [2017-03-20]. http://www.tbmtunnel.com/assets/oslo_mbt-version.pdf. [20]江华. 北京典型砂卵石地层土压平衡盾构适应性研究[D]. 北京: 中国矿业大学力学与建筑工程学院, 2012. JIANG Hua. Feasibility study on EPB TBM applied in typical gravel strata in Beijing metro[D]. Beijing: School of Mechanics and Civil Engineering, China University of Mining and Technology, 2012. [21]姜厚停. 土压平衡盾构施工土体改良试验研究现状综述[J]. 市政技术, 2016, 34(5): 195-199. JIANG Houting. Current situation summary of soil improvement experimental study of EPB shield tun-neling[J]. Municipal Engineering Technology, 2016, 34(5): 195-199. [22]李潮. 砂卵石地层土压平衡盾构关键参数计算模型研究[D]. 北京: 中国矿业大学(北京)力学与建筑工程学院, 2013. LI Chao. Study on the calculation models of key parameters of the EPB shield machine in sandy cobble ground[D]. Beijing: School of Mechanics and Civil Engineering, China University of Mining and Technology, 2013. [23]霍晓波. 武汉地铁盾构地层适应性研究[D]. 上海: 同济大学土木工程学院, 2016. HUO Xiaobo. Experimental study on ground suitability for EPBM tunneling in Wuhan metro[D]. Shanghai: College of Civil Engineering, Tongji University, 2016. [24]唐卓华, 徐前卫, 杨新安, 等. 富水砂层盾构掘进碴土改良技术[J]. 现代隧道技术, 2016, 53(1): 153-158. TANG Zhuohua, XU Qianwei, YANG Xinan, et al. Soil conditioning technology for shield tunnelling in a water-rich sandy stratum[J]. Modern Tunnelling Technology, 2016, 53(1): 153-158. |
[1] | 聂东清1, 翟之阳1, 张威1, 李志2. 双排桩桩间土加固影响的有限元分析[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 919-929. |
[2] | 孟 尧, 侯广信, 刘维滨, 刘永飞. 水下压缩机增压技术的发展及适应性研究[J]. 海洋工程装备与技术, 2024, 11(3): 57-62. |
[3] | 沈 琦, 李欧萍, 刘 超, 程光远, 喻西崇. 双碳背景下海上新型储能技术的适应性分析[J]. 海洋工程装备与技术, 2024, 11(1): 106-115. |
[4] | 陈岩, 李艳艳, 杨立波, 倪兴虎, 杨柏胜, 王亚辉. 地海杂波统计特性研究概述[J]. 空天防御, 2020, 3(4): 44-51. |
[5] | 王楷, 朱梦杰, 束川良. 一种基于一维滚控飞行器的制导方法研究[J]. 空天防御, 2018, 1(2): 27-32. |
[6] | 周晓和1,任杰1,马大为1,朱忠领1,王玺2. 适应性底座附加载荷影响因素的敏感度分析[J]. 上海交通大学学报(自然版), 2015, 49(05): 657-662. |
[7] | 王清, 李玉星, 谢彬, 喻西崇. 大型FLNG装置上部模块混合制冷剂液化工艺的适应性评价分析[J]. 海洋工程装备与技术, 2014, 1(1): 42-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||