[1]ZAN P, LIU J, JIANG E, et al. Assessment and in vitro experiment of artificial anal sphincter system based on rebuilding the rectal sensation function[J]. International Journal of Artificial Organs, 2014, 37(5): 392-401.
[2]克磊, 颜国正, 刘志强, 等. 人工肛门括约肌性能与生物相容性的动物实验[J]. 上海交通大学学报, 2014, 48(2): 193-198.
KE Lei, YAN Guozheng, LIU Zhiqiang, et al. In vivo research of performance and biocompatibility of an artificial anal sphincter[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 193-198.
[3]LU K, NGUANG S K. Design of auto-tuning capacitive power transfer system for wireless power transfer[J]. International Journal of Electronics, 2016, 103(9): 1430-1445.
[4]BOCAN K N, SEJDIC E. Adaptive transcutaneous power transfer to implantable devices: A state of the art review[J]. Sensors, 2016, 16(3): 393.
[5]BASAR M R, AHMAD M Y, CHO J, et al. Application of wireless power transmission systems in wireless capsule endoscopy: An overview[J]. Sensors, 2014, 14(6): 10929-10951.
[6]SHIBA K, ZULKIFLI N E B, ISHIOKA Y. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer[J]. Journal of Artificial Organs, 2016, 20(2): 1-7.
[7]KE L, YAN G, WANG Z, et al. Design and assessment of novel artificial anal sphincter with adaptive transcutaneous energy transfer system[J]. Journal of Medical Engineering & Technology, 2015, 39(2): 159-167.
[8]马官营, 颜国正, 何秀. 基于电磁感应的消化道内微系统的无线供能[J]. 上海交通大学学报, 2008, 42(5): 798-802.
MA Guanying, YAN Guozheng, HE Xiu. The wireless power delivery for dastrointestinal microsystems based on electromagnetic coupling[J]. Journal of Shanghai Jiao Tong University, 2008, 42(5): 798-802.
[9]WU J, LEI Y. Analytical expression to impedance for solenoid coil with a coaxial cylindrical ferrite core of finite length[J]. Journal of Physics D Applied Physics, 2002, 35(6): 570-575.
[10]SPITZER V, ACKERMAN M J, SCHERZINGER A L, et al. The visible human male: A technical report[J]. Journal of the American Medical Informatics Association Jamia, 1996, 3(2): 118-130.
[11]SALAHUDDIN S, PORTER E, KREWER F, et al. Optimised analytical models of the dielectric properties of biological tissue[J]. Medical Engineering & Physics, 2017, 43: 103-111.
[12]GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293.
[13]SIMON W, BAGGEN R, LAUER A. EMPIRE XCcel: Efficient simulation of RF MEMS and antennas with XPU FDTD technology[C] ∥IEEE International Symposium on Antennas and Propagation & Usnc/ursi National Radio Science Meeting. Orlando: IEEE, 2013: 2327-2328.
[14]MARTENS L, MOERLOOSE J D, ZUTTER D D, et al. Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone[J]. Radio Science, 2016, 30(1): 283-290.
[15]MAMMOUDI H, DURNEY C H, JOHNSON C C. Comparison of the average specific absorption rate in the ellipsoidal conductor and dielectric models of humans and monkeys at radio frequencies[J]. Radio Science, 2016, 12(6S): 65-72.
[16]MCROBBIE D. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)[J]. Health Physics, 2010, 99(6): 818.
[17]BOLTON L B, BENNETT C, RICHARDS H, et al. Letters to the editor—Comment on “a new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation”[J]. Antennas & Propagation Magazine IEEE, 2006, 48(4): 129-130. |