[1]赵双双. 微光学集成的高精度 MOEMS加速度传感器研究[D]. 杭州: 浙江大学, 2013.
ZHAO Shuangshuang. Research on high accuracy MOEMS accelerometer integrated with micro optics [D]. Hangzhou: Zhejiang University, 2013.
[2]罗彪, 温志渝, 陈李, 等. MOEMS 扫描微镜的测试实验与分析[J]. 纳米技术与精密工程, 2012, 10(4): 307-312.
LUO Biao, WEN Zhiyu, CHEN Li, et al. Experiment and analysis of MOEMS scanning microscope[J]. Nanotechnology and Precision Engineering, 2012, 10(4): 307-312.
[3]李海军. 基于光通信应用的MOEMS光学无源器件技术研究[D]. 长春: 吉林大学, 2007.
LI Haijun. Research on MOEMS optical passive components based on optical communication [D]. Changchun: Jilin University, 2007.
[4]YEOW J T W, YANG V X D, CHAHWAN A, et al. Micromachined 2-D scanner for 3-D optical cohe-rence tomography[J]. Sensors and Actuators A: Physical, 2005, 117(2): 331-340.
[5]HUNG A C L, LAI H Y H, LIN T W, et al. An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display[J]. Sensors and Actuators A: Physical, 2015, 222: 122-129.
[6]HAH D, HUANG T Y, TSAI J C, et al. Low-vol-tage, large-scan angle MEMS analog micro-mirror arrays with hidden vertical comb-drive actuators[J]. Journal of Microelectromechanical Systems, 2004, 13(2): 279-289.
[7]KOH K H, KOBAYASHI T, LEE C. Investigation of piezoelectric driven MEMS mirrors based on single and double S-shaped PZT actuator for 2-D scanning applications[J]. Sensors and Actuators A: Physical, 2012, 184: 149-159.
[8]BERNSTEIN J J, TAYLOR W P, BRAZZLE J D, et al. Electromagnetically actuated mirror arrays for use in 3-D optical switching applications[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 526-535.
[9]IZHAR U, IZHAR A B, TATIC-LUCIC S. A multi-axis electrothermal micromirror for a miniaturized OCT system[J]. Sensors and Actuators A: Physical, 2011, 167(2): 152-161.
[10]Fridkin V M, Photoferroelectrics[M]. New York: Springer, 1979.
[11]于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13): 2-13.
YU Jingjun, PEI Xu, BI Shusheng, et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13.
[12]贺磊, 吉晓民, 杨先海, 等. 并联Roberts柔性机构及其微定位平台的结构与位移分析[J]. 机械强度, 2015, 37(6): 1057-1063.
HE Lei, JI Xiaomin, YANG Xianhai, et al. Structure and displacement analysis for compliant parallel Roberts mechanism and micro-positioning stage[J]. Journal of Mechanical Strength, 2015, 37(6): 1057-1063.
[13]宗光华, 裴旭, 于靖俊, 等. 一种新型柔性直线导向机构及其运动精度分析[J]. 光学精密工程, 2008, 16(4): 630-635.
ZONG Guanghua, PEI Xu, YU Jingjun, et al. Novel compliant linear guiding mechanism and analysis of kinetic precision[J]. Optics and Precision Engineering, 2008, 16(4): 630-635.
[14]HUANG J H, WANG X J, WANG J. A mathematical model for predicting photo-induced voltage and photostriction of PLZT with coupled multi-physics fields and its application[J]. Smart Materials and Structures, 2016, 25(2): 025002.
[15]纪华伟. 压电陶瓷驱动的微位移工作台建模与控制技术研究[D]. 杭州: 浙江大学, 2006.
JI Huawei. Micro-displacement worktable modeling and control technology driven by piezoelectric actuator[D]. Hangzhou: Zhejiang Uniersity, 2006.
[16]刘青. 柔性铰链四杆机构变形分析及仿真[D]. 兰州: 兰州理工大学, 2011.
LIU Qing. Deformation analysis and simulation of flexible hinge four-bar linkage[D]. Lanzhou: Lanzhou University of Technology, 2011. |