上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (11): 1320-1327.doi: 10.16183/j.cnki.jsjtu.2017.11.006
丁亚男,谭淑霖,韩先洪,崔振山
发布日期:
2017-11-30
基金资助:
DING Yanan,TAN Shulin,HAN Xianhong,CUI Zhenshan
Published:
2017-11-30
摘要: 针对热冲压成形过程,建立了硼钢微观组织和产品性能预测的模型,分别采用Li模型和K-M模型模拟热冲压过程中的扩散和非扩散型相变;在此基础上,分别采用硬度混合法则、强度经验公式和两相混合表象模型预测最终产品的硬度、强度和延伸率.将上述模型在有限元软件平台 LS-DYNA 上集成,并模拟了一个U型件的热冲压成形过程.通过U型件的组织含量和力学性能测量值与模拟值对比,证实了所建热冲压产品性能预测模型具有较好的准确性和可靠性.
中图分类号:
丁亚男,谭淑霖,韩先洪,崔振山. 硼钢热冲压产品的力学性能预测模型及U型件验证[J]. 上海交通大学学报, 2017, 51(11): 1320-1327.
DING Yanan,TAN Shulin,HAN Xianhong,CUI Zhenshan. Model of Properties Prediction for Boron Steel Hot Stamping Products and Its Validation in a U-Cap Part[J]. Journal of Shanghai Jiao Tong University, 2017, 51(11): 1320-1327.
[1]YAO Y, MENG J P, MA L Y, et al. Study on hot stamping and usibor 1500P[J]. Applied Mechanics and Materials, 2013, 320: 419-425. [2]谢磊磊, 唐荻, 江海涛, 等. 汽车用先进高强钢的成形性能[J]. 塑性工程学报, 2013, 20(1): 84-88. XIE Leilei, TANG Di, JIANG Haitao, et al. Study on formability of advanced high strength steel for automobiles[J]. Journal of Plasticity Engineering, 2013, 20(1): 84-88. [3]ANDERSSON A. Numerical and experimental evaluation of springback in advanced high strength steel[J]. Journal of Materials Engineering and Performance, 2007, 16(3): 301-307. [4]BOK H H, LEE M G, PAVLINA E J, et al. Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part[J]. International Journal of Mechanical Sciences, 2011, 53(9): 744-752. [5]SHI Z M, LIU K, WANG M Q, et al. Thermo-mechanical properties of ultra high strength steel 22SiMn2TiB at elevated temperature[J]. Materials Science and Engineering: A, 2011, 528(10): 3681-3688. [6]KARBASIAN H, TEKKAYA A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118. [7]RAVIER P, ARANDA L G, CHASTEL Y. Hot stamping experiment and numerical simulation of pre-coated USIBOR1500 quenchable steels[J]. SAE Technical Paper, 2003. [8]KIRKALDY J S, VENUGOPALAN D. Prediction of microstructure and hardenability in low-alloy steels[J]. Phase Transformations in Ferrous Alloys, 1983: 125-148. [9]LI M V, NIEBUHR D V, MEEKISHO L L, et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661-672. [10]KERSTR M P, OLDENBURG M. Austenite decomposition during press hardening of a boron steel—Computer simulation and test[J]. Journal of Materials Processing Technology, 2006, 174(1): 399-406. [11]KOISTINEN D P, MARBURGER R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60. [12]LEE S J, LEE Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Materialia, 2008, 56(7): 1482-1490. [13]LEE S J, PAVLINA E J, VAN TYNE C J. Kinetics modeling of austenite decomposition for an end-quenched 1045 steel[J]. Materials Science and Engineering: A, 2010, 527(13): 3186-3194. [14]ZHU L J, GU Z W, HONG X U, et al. Modeling of microstructure evolution in 22MnB5 steel during hot stamping[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 197-201. [15]HAMELIN C J, MURANSKY O, SMITH M C, et al. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Materialia, 2014, 75: 1-19. [16]SPEER J G, ASSUNCO F C R, MATLOCK D K, et al. The “quenching and partitioning” process: Background and recent progress[J]. Materials Research, 2005, 8(4): 417-423. [17]SANTOFIMIA M J, ZHAO L, PETROV R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Materialia, 2011, 59(15): 6059-6068. [18]CAIA Y J, HALIM F S, LI G H, et al. Hot stamping simulation and austenite decomposition modeling of an automobile cross member[J]. Procedia Engineering, 2011, 15: 4902-4907. [19]ANDREWS K W. Empirical formulae for the calculation of some transformation temperatures[J]. Journal of the Iron and Steel Institute, 1965, 203(7): 721-727. [20]HONEYCOMBE R W K. Steels: Microstructure and properties[M]. London: Edward Arnold, 1995. [21]BHADESHIA BKDH. Bainite in Steels. Number 504, The Institute of Materials[R]. London: 0-901462-95-0, 1992. [22]MAYNIER Ph, JUNGMANN B, DOLLET J. Creusot—Loire System for the Prediction of the Mechanical Properties of Low Alloy Steel Products[M]. Hardenability Concepts with Applications to Steel, TMS-AIME, Materials Park, Ohio, 1977: 518-545. [23]CUI J J, LEI C X, XING Z W, et al. Predictions of the mechanical properties and microstructure evolution of high strength steel in hot stamping[J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2244-2254. [24]MATLOCK D K., SPEER J G. Third generation of AHSS: Microstructure design concepts[C]∥Microstructure and Texture in Steels. Springer, 2009: 185-205. [25]MILEIKO S T. The tensile strength and ductility of continuous fibre composites[J]. Journal of Materials Science, 1969, 4(11): 974-977. [26]许为宗. 超高强度增强塑性淬火-碳分配钢的组织设计[D]. 上海: 上海交通大学材料科学与工程学院, 2010. [27]DAVIES R G. The deformation behavior of a vanadium-strengthened dual phase steel[J]. Metallurgical Transactions A, 1978, 9(1): 41-52. [28]盈亮. 高强度钢热冲压关键工艺试验研究与应用[D]. 大连: 大连理工大学材料科学与工程学院, 2013. [29]TANG B T, WANG Q L, WANG Z Q, et al. The influence of deformation history on microstructure and microhardness during the hot stamping process of boron steel B1500HS[J]. International Journal of Materials and Product Technology, 2013, 46(4): 255-268. [30]MALINOWSKI Z, LENARD J G, DAVIES M E. A study of the heat-transfer coefficient as a function of temperature and pressure[J]. Journal of Materials Processing Technology, 1994, 41(2): 125-142. [31]CARON Etienne, DAUN Kyle J, WELLS Mary A. Experimental characterization of heat transfer coefficients during hot forming die quenching of boron steel[J]. Metallurgical and Materials transactions B, 2013, 44(2): 332-343. [32]郝新,韩先洪, 杨坤, 等. 热冲压过程中的模内传热现象[J]. 塑性工程学报, 2014, 21(2): 98-101. HAO Xin, HAN Xianhong, YANG Kun, et al. Theoretical and experiment research on heat transfer phenomena in hot stamping[J]. Journal of Plasticity Engineering, 2014, 21(2): 98-101. |
[1] | 李萍,代光旭,杨卫正,胡传鹏,吴超,薛克敏. 铲旋工艺的有限元分析及试验研究[J]. 上海交通大学学报, 2019, 53(6): 719-725. |
[2] | 解焕阳, 董湘怀, 方林强. 电塑性效应及在塑性成形中的应用新进展[J]. 上海交通大学学报(自然版), 2012, 46(07): 1059-1062. |
[3] | 何建丽,肖艳红,崔振山,陈飞. 热成形韧性断裂判据的建立及应用[J]. 上海交通大学学报(自然版), 2013, 47(11): 1707-1711. |
[4] | 路平1a,1b,张云开1a,1b,陈波2. 汽车轮辐错距强力旋压成形的有限元仿真[J]. 上海交通大学学报(自然版), 2015, 49(01): 56-61. |
[5] | 万旭敏,赵亦希,孔庆帅,于忠奇. 旋压法兰起皱预测[J]. 上海交通大学学报, 2017, 51(11): 1312-1319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1061
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||