[1]YAO Y, MENG J P, MA L Y, et al. Study on hot stamping and usibor 1500P[J]. Applied Mechanics and Materials, 2013, 320: 419-425.
[2]谢磊磊, 唐荻, 江海涛, 等. 汽车用先进高强钢的成形性能[J]. 塑性工程学报, 2013, 20(1): 84-88.
XIE Leilei, TANG Di, JIANG Haitao, et al. Study on formability of advanced high strength steel for automobiles[J]. Journal of Plasticity Engineering, 2013, 20(1): 84-88.
[3]ANDERSSON A. Numerical and experimental evaluation of springback in advanced high strength steel[J]. Journal of Materials Engineering and Performance, 2007, 16(3): 301-307.
[4]BOK H H, LEE M G, PAVLINA E J, et al. Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part[J]. International Journal of Mechanical Sciences, 2011, 53(9): 744-752.
[5]SHI Z M, LIU K, WANG M Q, et al. Thermo-mechanical properties of ultra high strength steel 22SiMn2TiB at elevated temperature[J]. Materials Science and Engineering: A, 2011, 528(10): 3681-3688.
[6]KARBASIAN H, TEKKAYA A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118.
[7]RAVIER P, ARANDA L G, CHASTEL Y. Hot stamping experiment and numerical simulation of pre-coated USIBOR1500 quenchable steels[J]. SAE Technical Paper, 2003.
[8]KIRKALDY J S, VENUGOPALAN D. Prediction of microstructure and hardenability in low-alloy steels[J]. Phase Transformations in Ferrous Alloys, 1983: 125-148.
[9]LI M V, NIEBUHR D V, MEEKISHO L L, et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661-672.
[10]KERSTR M P, OLDENBURG M. Austenite decomposition during press hardening of a boron steel—Computer simulation and test[J]. Journal of Materials Processing Technology, 2006, 174(1): 399-406.
[11]KOISTINEN D P, MARBURGER R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60.
[12]LEE S J, LEE Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Materialia, 2008, 56(7): 1482-1490.
[13]LEE S J, PAVLINA E J, VAN TYNE C J. Kinetics modeling of austenite decomposition for an end-quenched 1045 steel[J]. Materials Science and Engineering: A, 2010, 527(13): 3186-3194.
[14]ZHU L J, GU Z W, HONG X U, et al. Modeling of microstructure evolution in 22MnB5 steel during hot stamping[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 197-201.
[15]HAMELIN C J, MURANSKY O, SMITH M C, et al. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Materialia, 2014, 75: 1-19.
[16]SPEER J G, ASSUNCO F C R, MATLOCK D K, et al. The “quenching and partitioning” process: Background and recent progress[J]. Materials Research, 2005, 8(4): 417-423.
[17]SANTOFIMIA M J, ZHAO L, PETROV R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Materialia, 2011, 59(15): 6059-6068.
[18]CAIA Y J, HALIM F S, LI G H, et al. Hot stamping simulation and austenite decomposition modeling of an automobile cross member[J]. Procedia Engineering, 2011, 15: 4902-4907.
[19]ANDREWS K W. Empirical formulae for the calculation of some transformation temperatures[J]. Journal of the Iron and Steel Institute, 1965, 203(7): 721-727.
[20]HONEYCOMBE R W K. Steels: Microstructure and properties[M]. London: Edward Arnold, 1995.
[21]BHADESHIA BKDH. Bainite in Steels. Number 504, The Institute of Materials[R]. London: 0-901462-95-0, 1992.
[22]MAYNIER Ph, JUNGMANN B, DOLLET J. Creusot—Loire System for the Prediction of the Mechanical Properties of Low Alloy Steel Products[M]. Hardenability Concepts with Applications to Steel, TMS-AIME, Materials Park, Ohio, 1977: 518-545.
[23]CUI J J, LEI C X, XING Z W, et al. Predictions of the mechanical properties and microstructure evolution of high strength steel in hot stamping[J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2244-2254.
[24]MATLOCK D K., SPEER J G. Third generation of AHSS: Microstructure design concepts[C]∥Microstructure and Texture in Steels. Springer, 2009: 185-205.
[25]MILEIKO S T. The tensile strength and ductility of continuous fibre composites[J]. Journal of Materials Science, 1969, 4(11): 974-977.
[26]许为宗. 超高强度增强塑性淬火-碳分配钢的组织设计[D]. 上海: 上海交通大学材料科学与工程学院, 2010.
[27]DAVIES R G. The deformation behavior of a vanadium-strengthened dual phase steel[J]. Metallurgical Transactions A, 1978, 9(1): 41-52.
[28]盈亮. 高强度钢热冲压关键工艺试验研究与应用[D]. 大连: 大连理工大学材料科学与工程学院, 2013.
[29]TANG B T, WANG Q L, WANG Z Q, et al. The influence of deformation history on microstructure and microhardness during the hot stamping process of boron steel B1500HS[J]. International Journal of Materials and Product Technology, 2013, 46(4): 255-268.
[30]MALINOWSKI Z, LENARD J G, DAVIES M E. A study of the heat-transfer coefficient as a function of temperature and pressure[J]. Journal of Materials Processing Technology, 1994, 41(2): 125-142.
[31]CARON Etienne, DAUN Kyle J, WELLS Mary A. Experimental characterization of heat transfer coefficients during hot forming die quenching of boron steel[J]. Metallurgical and Materials transactions B, 2013, 44(2): 332-343.
[32]郝新,韩先洪, 杨坤, 等. 热冲压过程中的模内传热现象[J]. 塑性工程学报, 2014, 21(2): 98-101.
HAO Xin, HAN Xianhong, YANG Kun, et al. Theoretical and experiment research on heat transfer phenomena in hot stamping[J]. Journal of Plasticity Engineering, 2014, 21(2): 98-101. |