上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (6): 727-733.

• 兵器工业 • 上一篇    下一篇

 基于机器视觉的动态多目标识别

 薛梦霞,刘士荣,王坚   

  1.  杭州电子科技大学  自动化学院, 杭州 310018
  • 出版日期:2017-06-30 发布日期:2017-06-30
  • 基金资助:
     

 Dynamic MultiTarget Recognition Based on Machine Vision

 XUE Mengxia,LIU Shirong,WANG Jian   

  1.  School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
  • Online:2017-06-30 Published:2017-06-30
  • Supported by:
     

摘要:  提出了一种基于机器视觉的实时动态多目标识别的方法.该方法首先根据前后帧之间像素的变化,分割出运动目标和样本图像,然后使用Gabor滤波器提取图像的特征,得到特征向量.最后使用Fisher判别准则分类识别,将得到的分类识别结果自动标注在输出图像中,并且将其连续输出,便能获得已经识别完成的输出视频.实验结果表明,在多个动态目标的情况下,综合运用Gabor特征与帧间差分法的动态目标识别方法能准确检测到动态目标区域,并能准确分类、识别和标注.

关键词:  , 机器视觉, Fisher判别准则, 动态多目标识别, 目标分割

Abstract:  This paper proposes a realtime dynamic multitarget recognition method based on machine vision. The method first segments the moving targets according to the pixel change between the front and rear frames, then extracts the features of the segmented moving targets and sample images using Gabor filter to obtain the eigenvector, and finally uses Fisher discriminant criterion for classification and recognition so as to automatically lable the classification and recognition results onto the output images. The images labeled with the recognition results are to be outputted continuously, and hence the output videos which have been recognized can be obtained. The experimental results show that in the circumstance of multiple targets, the proposed dynamic target recognition method integrating Gabor feature and interframe difference can accurately detect the dynamic target area, and realize classification, recognition and labeling.

Key words:  machine vision, Fisher discriminant criterion, dynamic multitarget recognition, object segmentation

中图分类号: