上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (8): 1013-1017.doi: 10.16183/j.cnki.jsjtu.2017.08.017
张威1,2,王小威1,2,3,姜勇1,2,黄鑫1,2,巩建鸣1,2,翁晓祥1,2
发布日期:
2017-08-30
基金资助:
ZHANG Wei1,2,WANG Xiaowei1,2,3,JIANG Yong1,2
HUANG Xin1,2,GONG Jianming1,2,WENG Xiaoxiang1,2
Published:
2017-08-30
Supported by:
摘要: 在连续损伤力学框架内,采用2种损伤状态变量模型来描述P92钢在650℃下的软化、损伤的起始及扩展机制.在分析连续损伤方程及已有的相关蠕变试验数据的基础上,提出了蠕变连续损伤方程参数的确定方法并得到650℃下P92钢蠕变连续损伤方程.结果表明:通过蠕变试验数据得到的损伤参量确定的蠕变连续损伤方程,可以很好地模拟P92钢在650℃下的蠕变变形,多损伤参量连续损伤方程也可以很好地外推至其他应力水平.基于多损伤参量的连续损伤方程可以从非弹性应变速率、内应力及微观结构的演化行为方面对蠕变变形进行较好地描述,具有工程使用价值.
中图分类号:
张威1,2,王小威1,2,3,姜勇1,2,黄鑫1,2,巩建鸣1,2,翁晓祥1,2. 基于多损伤参量的P92钢蠕变变形模拟[J]. 上海交通大学学报, 2017, 51(8): 1013-1017.
ZHANG Wei1,2,WANG Xiaowei1,2,3,JIANG Yong1,2 HUANG Xin1,2,GONG Jianming1,2,WENG Xiaoxiang1,2. Simulation of Creep Deformation for P92 Steel Based on
Multiple Damage Parameters[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 1013-1017.
[1]ENNIS P J, CZYRSKAFILEMONOWICZ A. Recent advances in creepresistant steels for power plant applications[J]. Sadhana, 2003, 28(3/4): 709730. [2]王小威, 巩建鸣, 郭晓峰, 等. 超超临界发电厂中 P92 钢蠕变特性及断裂机制[J]. 南京工业大学学报(自然科学版),2014, 36(3): 3238. WANG Xiaowei, GONG Jianming, GUO Xiaofeng, et al. Creep properties and fracture mechanism of P92 steel used inultrasupercritical power[J]. Journal of Nanjing Tech University (Natural Science Edition), 2014, 36(3): 3238. [3]FEDOSEEVA A, DUDOVA N, KAIBYSHEV R. Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel[J]. Materials Science and Engineering: A, 2016, 654(1): 112. [4]BENDICK W, GABREL J. Assessment of creep rupture strength for the new martensitic 9%Cr steels E911 and T/P92[J]. Materials at High Temperatures, 2008, 25(3): 139148. [5]YURECHKO M, SCHROER C, SKRYPNIK A, et al. Creeptorupture of the steel P92 at 650℃ in oxygencontrolled stagnant lead in comparison to air[J]. Journal of Nuclear Materials, 2013, 432(1): 7886. [6]PETRY C, LINDET G. Modelling creep behaviour and failure of 9Cr0.5Mo1.8WVNb steel[J]. International Journal of Pressure Vessels and Piping, 2009, 86(8): 486494. [7]YIN Y F, FAULKNER R G. Continuum damage mechanics modelling based on simulations of microstructural evolution kinetics[J]. Materials Science and Technology, 2006, 22(8): 929936. [8]WANG J, STEINMANN P, RUDOLPH J, et al. Simulation of creep and cyclic viscoplastic strains in highCr steel components based on a modified BeckerHackenberg model[J]. International Journal of Pressure Vessels and Piping, 2015, 128(1): 3647. [9]CHEN H, ZHU G R, GONG J M. Creep life prediction for P91/12Cr1MoV dissimilar joint based on the omega method[J]. Procedia Engineering, 2015, 130(1): 11431147. [10]JELWAN J, CHOWDHURY M, PEARCE G. Design for creep: A critical examination of some methods[J]. Engineering Failure Analysis, 2013, 27(1): 350372. [11]ZHENG Y, YANG S, LING X. Creep life prediction of small punch creep testing specimens for serviceexposed Cr5Mo using the thetaprojection method[J]. Engineering Failure Analysis, 2017, 72(1): 5866. [12]EVANS M. A comparative assessment of creep property predictions for a 1CrMoV rotor steel using the crispen, CDM, omega and theta projection techniques[J]. Journal of Materials Science, 2004, 39(6): 20532071. [13]DYSON B. Use of CDM in materials modeling and component creep life prediction[J]. Journal of Pressure Vessel Technology, 2000, 122(3): 281296. [14]PERRIN I J, HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 600℃—675℃[J]. The Journal of Strain Analysis for Engineering Design, 1996, 31(4): 299314. [15]ENNIS P J, ZIELINSKALIPIEC A, WACHTER O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia, 1997, 45(12): 49014907. [16]XU Q, LU Z, WANG X. Damage modelling: The current state and the latest progress on the development of creep damage constitutive equations for high Cr steels[J]. Materials at High Temperatures, 2017, 34(3): 229237. [17]SKLENIKA V, KUCHAOV K, SVOBODA M, et al. Longterm creep behavior of 9%—12%Cr power plant steels[J]. Materials Characterization, 2003, 51(1): 3548. [18]MURCH C , LEEN S B, O’DONOGHUE P E, et al. A physicallybased creep damage model for effects of different precipitate types[J]. Materials Science and Engineering: A, 2017, 682(1): 714722. |
[1] | 赵子任1, 杜世昌1, 黄德林1, 任斐2, 梁鑫光2. 多工序制造系统暂态阶段产品质量#br# 马尔科夫建模与瓶颈分析[J]. 上海交通大学学报, 2017, 51(10): 1166-1173. |
[2] | 周鹏辉, 马红占, 陈东萍, 陈梦月, 褚学宁. 基于模糊随机故障模式与影响分析的#br# 产品再设计模块识别[J]. 上海交通大学学报, 2017, 51(10): 1189-1195. |
[3] | 李昌玺1, 2, 周焰1, 林菡3, 李灵芝1, 郭戈1. 基于MIMOFNN模型的弹道导弹目标#br# 时空序贯融合识别方法[J]. 上海交通大学学报, 2017, 51(9): 1138-. |
[4] | 冯明月, 何明浩, 韩俊, 郁春来. 基于协方差拟合旋转不变子空间信号参数#br# 估计算法的高分辨到达角估计[J]. 上海交通大学学报, 2017, 51(9): 1145-. |
[5] | 杨平1,盛杰1,王禹程2,李柱永1,金之俭1,洪智勇1. YBa2Cu3O7δ超导带材非均匀性 对失超传播特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(9): 1090-1096. |
[6] | 王星, 周一鹏, 田元荣, 陈游, 周东青, 贺继渊. 基于改进遗传算法和SinChirplet原子的调频#br# 雷达信号稀疏分解[J]. 上海交通大学学报, 2017, 51(9): 1124-1130. |
[7] | 张良俊1, 2, 李晓慈1, 吴静怡1, 蔡爱峰1. 大型空间展开机构微重力环境模拟#br# 悬吊装置热结构耦合分析[J]. 上海交通大学学报, 2017, 51(8): 954-961. |
[8] | 夏海亮1, 2, 刘亚坤1, 2, 刘全桢3, 刘宝全3, 傅正财1, 2. 长持续时间雷电流分量作用下电极形状#br# 对金属烧蚀特性的影响[J]. 上海交通大学学报, 2017, 51(8): 903-908. |
[9] | 谷家扬, 谢玉林, 陶延武, 黄祥宏, 吴介. 新型浮式钻井生产储油平台#br# 涡激运动数值模拟及试验研究 [J]. 上海交通大学学报, 2017, 51(7): 878-885. |
[10] | 林达, 朱益佳, 魏小栋, 王志宇, 张武高. 喷油参数对聚甲氧基二甲醚/柴油发动机燃烧及其#br# 颗粒物排放的影响[J]. 上海交通大学学报, 2017, 51(7): 787-795. |
[11] | 孟庆阳1, 阎威武1, 胡勇1, 程建林1, 陈世和2, 张曦2. 基于子空间方法的超超临界机组#br# 过热蒸汽系统模型辨识[J]. 上海交通大学学报, 2017, 51(6): 672-678. |
[12] | 蒋华军a, 蔡艳a, b, 李超豪a, 李芳a, b, 华学明a, b. 基于改进Sobel算法的焊缝X射线图像#br# 气孔识别方法[J]. 上海交通大学学报, 2017, 51(6): 665-671. |
[13] | 董冠华,殷勤,殷国富,向召伟. 机床结合部耦合动刚度的辨识与建模[J]. 上海交通大学学报(自然版), 2015, 49(09): 1263-1434. |
[14] | 谢启江,余海东. 硬岩掘进机刀盘载荷与撑靴接触界面刚度的耦合关系[J]. 上海交通大学学报(自然版), 2015, 49(09): 1269-1275. |
[15] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1025
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||