上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (08): 1199-1204.
余昊a,孙锬锋a,b,蒋兴浩a,b
收稿日期:
2014-06-18
出版日期:
2015-08-31
发布日期:
2015-08-31
基金资助:
国家自然科学基金项目(61272249,61272439),上海市科委国际研究合作项目(12510708500),国家教委博士点专项基金项目(20120073110053),软件工程国家实验室开放研究基金项目(SKLSE20120912)资助
YU Haoa,SUN Tanfenga,b,JIANG Xinghaoa,b
Received:
2014-06-18
Online:
2015-08-31
Published:
2015-08-31
摘要:
摘要: 提出了一种基于光流块统计特征的视频异常行为检测算法.该算法首先对训练集视频序列的光流场进行分块及预处理,而后提取光流块的统计特征,所提取的块统计特征同时包括了光流块的幅度信息和相位信息,通过训练集得到的光流块统计特征训练出对应的正常行为的高斯混合模型(GMM).测试集通过同样的方式提取光流块统计特征,通过计算所提取统计特征以多大的概率属于GMM判定所检测光流块的异常程度.实验结果表明,该算法能够在一定程度上解决运动物体一致性和部分遮挡问题,并提高了异常行为检测的准确率.
中图分类号:
余昊a,孙锬锋a,b,蒋兴浩a,b. 基于光流块统计特征的视频异常行为检测算法[J]. 上海交通大学学报(自然版), 2015, 49(08): 1199-1204.
YU Haoa,SUN Tanfenga,b,JIANG Xinghaoa,b. Video Anomaly Detection Based on Statistic Feature of Optical Flow Block[J]. Journal of Shanghai Jiaotong University, 2015, 49(08): 1199-1204.
[1]Stauffer C, Grimson W E L.Learning patterns of activity using realtime tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747757.[2]Morris B T,Trivedi M M.Learning, modeling and classification of vehicle track patterns from live video[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(3):425437.[3]Basharat A, Gritai A, Shah M.Learning object motion patterns for anomaly detection and improved object detection[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage:IEEE, 2008: 18.[4]Jiang F, Yuan J, Tsaftaris S A, et al. Video anomaly detection in spatiotemporal context[C]∥Proceedings of the International Conference on Image Processing. Hong Kong: IEEE, 2010: 705708.[5]Zhang T, Lu H, Li S Z. Learning semantic scene models by object classification and trajectory clustering[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE,2009: 19401947.[6]Mehran R, Oyama A, Shah M.Abnormal crowd behavior detection using social force model[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 935942.[7]Mahadevan V, Li W, Bhalodia V, et al. Anomaly detection in crowded scenes[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 19751981.[8]Xu D, Wu X, Song D, et al. Hierarchical activity discovery within spatiotemporal context for video anomaly detection[C]∥Image Processing (ICIP), 2013 20th IEEE International Conference on. Melbourne: IEEE, 2013: 35973601.[9]Liu C. Beyond pixels: Exploring new representations and applications for motion analysis[D]. Cambridge:Massachusetts Institute of Technology,2009.[10]Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models[J]. Digital signal processing,2000,10(1):1941.[11]Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[C]∥Proceedings of the International Conference on Pattern Recognition. Cambridge: IEEE, 2004: 2831.[12]Kim J, Grauman K.Observe locally, infer globally: A spacetime MRF for detecting abnormal activities with incremental updates[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 29212928. |
[1] | . 基于两阶段卷积神经网络的焊缝缺陷监测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
[2] | 胡铭轩, 乔钧, 张执南. 连续康复训练动作分割与评估[J]. 上海交通大学学报, 2023, 57(5): 533-544. |
[3] | 张文安, 高伟展, 刘安东. 基于动态运动原语和自适应控制的机器人技能学习[J]. 上海交通大学学报, 2023, 57(3): 354-365. |
[4] | 贾晓立,江晓波,蒋三新,刘佩林. 利用结构特征的语音压缩感知重建算法[J]. 上海交通大学学报(自然版), 2017, 51(9): 1111-1116. |
[5] | 成谢锋,傅女婷. 心音身份识别综述[J]. 上海交通大学学报(自然版), 2014, 48(12): 1745-1750. |
[6] | 陈明. 桥梁预警系统的数据预处理 [J]. 上海交通大学学报(自然版), 2012, 46(10): 1680-1686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||