上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (08): 1153-1158.

• 自动化技术、计算机技术 • 上一篇    下一篇

基于流形正则化的在线半监督极限学习机

王萍,王迪,冯伟   

  1. (天津大学 电气与自动化工程学院, 天津 300072)
  • 收稿日期:2014-09-19 出版日期:2015-08-31 发布日期:2015-08-31
  • 基金资助:

    2014年度公益性行业(气象)科研专项(GYHY201406004),天津市面上基金项目(14JCYBJC21800)资助

Online Semi-Supervised Extreme Learning Machine Based on Manifold Regularization

WANG Ping,WANG Di,FENG Wei   

  1. (Department of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)
  • Received:2014-09-19 Online:2015-08-31 Published:2015-08-31

摘要:

摘要: 在基于流形正则化的半监督极限学习机(SSELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSSELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SSELM的目标函数的流形正则项的近似,给出了OSSELM的近似算法OSSELM(buffer).在Abalone数据集上的实验显示,OSSELM(buffer) 在线学习的累计时间与所处理的样本个数呈线性关系,同时,9个公共数据集上的实验表明,OSSELM(buffer)的泛化能力与SSELM的泛化能力的相对偏差在1%以下.这些实验结果说明,OSSELM(buffer)不仅解决了内存问题,还在基本保持SSELM泛化能力的基础上大幅度提高了在线学习速度,可以有效应用于在线半监督学习当中.

关键词: 极限学习机, 半监督学习, 在线学习, 流形正则化

Abstract:

Abstract: In this paper, with the help of the rules of block matrix multiplication, an online semi-supervised extreme learning machine(OSSELM) was proposed according to semi-supervised extreme learning machine (SS-ELM)  based on manifold regularization.By the analysis of the manifoldregularization term of the objective function of SSELM, a kind of approximation algorithm of OSS-ELM named OSS-ELM(buffer) was proposed to avoid running out of memory in the process of online learning.The linear relationship between the sample number and the cumulative running time of the OSS-ELM(buffer) was revealed in the experiments using Abalone and the relative deviation of the generalization ability of the OSSELM and the SS-ELM is less than 1% in 9 public data sets, which show that the OSSELM(buffer) not only solves the problem of limited memory, but also improves the speed of online learning while keeping the generalization ability of SSELM. This proves that the OSSELM(buffer)can be effectively applied to online semisupervised learning.

Key words: extreme learning machine(ELM), semi-supervised learning, online learning, manifold regularization

中图分类号: