上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (08): 1137-1143.

• 自动化技术、计算机技术 • 上一篇    下一篇

前馈网络的一种高精度鲁棒在线贯序学习算法

卢诚波,梅颖   

  1. (丽水学院 工程与设计学院,浙江 丽水 323000)
  • 收稿日期:2014-09-01 出版日期:2015-08-31 发布日期:2015-08-31
  • 基金资助:

    国家自然科学基金项目(11171137),浙江省自然科学基金项目(LY13A010008)资助

An Accurate and Robust Online Sequential Learning Algorithm for Feedforward Networks

LU Chengbo,MEI Ying   

  1. (Faculty of Engineering and Design, Lishui University, Lishui 323000, Zhejiang, China)
  • Received:2014-09-01 Online:2015-08-31 Published:2015-08-31

摘要:

摘要:  基于离散傅里叶变换-极限学习机(DFT-ELM)提出了一种新的单隐层前馈神经网络在线贯序学习算法,命名为“在线贯序-离散傅里叶变换-极限学习机”(OS-DFT-ELM).该算法能够逐个或逐段学习数据,随着新数据的逐渐到达,单隐层前馈神经网络的内权矩阵和外权矩阵得到逐步调整.该算法与在线贯序-极限学习机(OS-ELM)相比,具有更高的精度和鲁棒性. 同时,通过实验和分析,表明OS-DFT-ELM具有优良性能.

关键词: 单隐层前馈神经网络, 在线贯序算法, 极限学习机

Abstract:

Abstract: In this paper, a kind of accurate and robust online sequential learning algorithm was proposed for single hidden layer feedforward networks. The algorithm is referred to as online sequential discrete Fourier transformextreme learning machine (OSDFTELM). This approach is able to learn data onebyone or chunkbychunk. During the growth of the data, input weights and output weights are adjusted incrementally. The proposed algorithm has a higher degree of accuracy and robustness compared to the approach referred to as online sequentialextreme learning machine (OSELM). Two simulation examples were presented to show the excellent performance of the proposed approach.

Key words: single hidden layer feedforward networks, online sequential learning machine, extreme learning machine

中图分类号: