上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (06): 737-742.
• 自动化技术、计算机技术 • 下一篇
胡静1,王春霞2,文成林2,李平1
收稿日期:
2015-03-15
出版日期:
2015-06-29
发布日期:
2015-06-29
基金资助:
国家自然科学基金项目(61304109,61490701,61174112,61333005)资助
HU Jing1,WANG Chunxia2,WEN Chenglin2,LI Ping1
Received:
2015-03-15
Online:
2015-06-29
Published:
2015-06-29
摘要:
摘要: 提出一种与质量相关的核潜结构投影方法,并将其应用于非线性过程的质量监测中.结果表明,与KPLS方法在过程潜变量空间监测质量相关的变化不同,新方法通过将质量变量空间进一步分为3个子空间,实现了对包含能被过程解释的质量部分以及不能被过程解释的质量部分的完整质量监测.同时,通过TE仿真案例验证了新方法的有效性.
中图分类号:
胡静1,王春霞2,文成林2,李平1. 基于核质量潜结构投影的非线性过程质量监测方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 737-742.
HU Jing1,WANG Chunxia2,WEN Chenglin2,LI Ping1. Quality Monitoring of Nonlinear Process Based on Kernel Projection to Quality Latent Structure[J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 737-742.
[1]周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术[M]. 北京:科学出版社, 2011:161170.[2]周东华, 叶银忠. 现代故障诊断与容错控制[M]. 北京:清华大学出版社, 2000:2444.[3]Jolliffe I T. Principal component analysis, Second Edition [M]. London: Springer, 2002:1012.[4]Qin S J. Survey on datadriven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2):220234.[5]Wen C L, Zhou F N, Wen C B, et al. An extended multiscale principal component analysis method and application in anomaly detection [J].Chinese Journal of Electronics, 2012, 21(3):471476.[6]Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks [J]. Computers and Chemical Engineering, 1992, 16(4):379391.[7]Rosipal R, Trejo L J. Kernel parital least squares regression in reproducing kernel hibert space [J]. Journal of Machine Learning Research, 2001(2):97123.[8]胡益, 王丽, 马贺贺, 等. 基于核PLS方法的非线性过程在线监控 [J]. 化工学报, 2011, 62(9):25552561.HU Yi, WANG Li, MA Hehe, et al. Online nonlinear process monitoring using kernel partial least squares [J]. CIESC Journal, 2011, 62(9):25552561.[9]Peng K X, Zhang K, Li G. Qualityrelated process monitoring based on total kernel PLS model and its industrial application [J]. Mathematical Problems in Engineering, 2013:114.[10]Zhang Y W, Sun R R, Fan Y P. Fault diagnosis of nonlinear process based on KCPLS reconstruction [J]. Chemometrics and Intelligent Laboratory Systems, 2015, 140:4960.[11]Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring [J]. AIChE Journal, 2010, 56(1):168178.[12]Zhao C H, Sun Y X. The multispace generalization of total projection to latent structures (MsTPLS) and its application to online process monitoring [C]∥2013 10th IEEE International Conference on ICCA. USA: IEEE, 2013: 14411446.[13]Qin S J, Zheng Y Y. Qualityrelevant and processrelevant fault monitoring with concurrent projection to latent structures [J]. AIChE Journal, 2013, 59(2):496504.[14]Hu J, Wen C L, Li P, et al. Direct projection to latent variable space for fault detection [J]. Journal of the Franklin Institute, 2014, 351(3):12261250.[15]Yin S, Ding X S, Zhang P, et al. Study on modifications of PLS approach for process monitoring [C]∥Proc of 18th IFAC World Congress. Milano, Italy: IFAC, 2011.[16]Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring [J]. Automatica, 2010, 46(1):204210.[17]Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch process [J]. Technometrics, 1995, 37:4159.[18]Downs J J, Vogel E F. A plantwide industrial process control problem [J]. Computer and Chemical Enginerring, 1993, 17(3):245255.[19]Chiang L H, Russell E, Braaz R D. Fault detection and diagnosis in industrial systems [M]. London: Springer, 2001. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | 李元, 姚宗禹. 基于邻域保持嵌入的主多项式非线性过程故障检测[J]. 上海交通大学学报, 2021, 55(8): 1001-1008. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[9] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[10] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[11] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[12] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[13] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[14] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[15] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||