上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (06): 842-848.
纪洪泉,何潇,周东华
收稿日期:
2015-01-15
出版日期:
2015-06-29
发布日期:
2015-06-29
基金资助:
国家自然科学基金资助项目(61490701,61210012,61290324,61473163)
JI Hongquan,HE Xiao,ZHOU Donghua
Received:
2015-01-15
Online:
2015-06-29
Published:
2015-06-29
摘要:
摘要: 作为数据驱动故障检测方法中的重要分支,基于多元统计分析的故障检测方法主要包括主元分析、偏最小二乘、独立元素分析和费舍尔判别分析.本文回顾了上述几种方法,包括数据模型、故障检测的原理及方法优劣.仿真实验说明了几种方法的特性及其故障检测的效果,并探讨了基于数据故障检测方法中的一些问题.
中图分类号:
纪洪泉,何潇,周东华. 基于多元统计分析的故障检测方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 842-848.
JI Hongquan,HE Xiao,ZHOU Donghua. Fault Detection Techniques Based on Multivariate Statistical Analysis[J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 842-848.
[1]周东华,李钢,李元. 数据驱动的工业过程故障诊断技术——基于主元分析与偏最小二乘的方法[M]. 北京:科学出版社,2011.[2]Ding S X. Modelbased fault diagnosis techniques: design schemes, algorithms and tools [M]. 2nd ed. London: Springer, 2013.[3]Qin S J. Survey on datadriven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220234.[4]李钢. 工业过程质量相关故障的诊断与预测方法[D]. 北京:清华大学,2010.[5]Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems [M]. London: Springer, 2001.[6]Geladi P, Kowalski B R. Partial leastsquares regression: a tutorial [J]. Analytica Chimica Acta, 1986, 185: 117.[7]Qin S J. Statistical process monitoring: Basics and beyond [J]. Journal of Chemometrics, 2003, 17(89): 480502.[8]Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring [J]. AIChE Journal, 2010, 56(1): 168178.[9]MacGregor J F, Jaeckle C, Kiparissides C, et al. Process monitoring and diagnosis by multiblock PLS methods [J]. AIChE Journal, 1994, 40(5): 826838.[10]De Jong S. SIMPLS: An alternative approach to partial least squares regression [J]. Chemometrics and Intelligent Laboratory Systems, 1993, 18(3): 251263.[11]Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring [J]. Automatica, 2010, 46(1): 204210.[12]Choi S W, Lee I B. Multiblock PLSbased localized process diagnosis [J]. Journal of Process Control, 2005, 15(3): 295306.[13]Kano M, Tanaka S, Hasebe S, et al. Monitoring independent components for fault detection [J]. AIChE Journal, 2003, 49(4): 969976.[14]Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis [J]. Journal of Process Control, 2004, 14(5): 467485.[15]Hyvrinen A. Fast and robust fixedpoint algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626634.[16]Hyvrinen A, Oja E. Independent component analysis: Algorithms and applications [J]. Neural Networks, 2000, 13(4): 411430. [17]Hyvrinen A, Oja E. A fast fixedpoint algorithm for independent component analysis [J]. Neural Computation, 1997, 9(7): 14831492.[18]Ge Z Q, Song Z H, Gao F R. Review of recent research on databased process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 35433562.[19]Downs J J, Vogel E F. A plantwide industrial process control problem [J]. Computers & Chemical Engineering, 1993, 17(3): 245255.[20]Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2004, 59(1): 223234.[21]Fisher R A. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics, 1936, 7(2): 179188. |
[1] | 郭金玉, 李文涛, 李元. 在线压缩核主元分析的自适应过程监控[J]. 上海交通大学学报, 2022, 56(10): 1397-1408. |
[2] | 席剑辉, 姜瀚, 陈博, 傅莉. 基于PCA-ELM的红外多光谱辐射测温[J]. 上海交通大学学报, 2021, 55(7): 891-898. |
[3] | 朱东, 姜萍萍, 颜国正, 王志武, 韩玎, 赵凯, 华芳芳, 姚盛健, 丁紫凡, 周泽润. 人工肛门括约肌系统便意感知重建[J]. 上海交通大学学报, 2020, 54(8): 771-777. |
[4] | 丛亚,葛志强,宋执环. 多采样率主元分析的过程故障检测[J]. 上海交通大学学报(自然版), 2015, 49(06): 762-767. |
[5] | 侯彦东,闫治宇,金勇. 小样本下基于特征子空间估计的故障诊断算法[J]. 上海交通大学学报(自然版), 2015, 49(06): 825-829. |
[6] | 杨庆,陈桂明,刘鲭洁,何庆飞. 基于测地线距离的核主元分析在齿轮泵故障识别中应用[J]. 上海交通大学学报(自然版), 2011, 45(11): 1632-1636. |
[7] | 韩华1, 谷波1, 任能2. 基于主元分析与支持向量机的制冷系统故障诊断方法[J]. 上海交通大学学报(自然版), 2011, 45(09): 1355-1361. |
[8] | 邵小龙,朱将伟,李云飞. 批量甜玉米低场核磁共振数据的统计分析 [J]. 上海交通大学学报(自然版), 2011, 45(01): 144-0148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||