上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (01): 96-100.
张斌,顾伯勤,宇晓明
收稿日期:
2014-04-23
ZHANG Bin,GU Boqin,YU Xiaoming
Received:
2014-04-23
摘要:
摘要: 建立了含界面相、纤维和基体的短纤维增强橡胶(SFRR)密封复合材料纵向拉伸模量的预测模型,采用MoriTanaka方法得到了SFRR的纵向拉伸模量的预测公式,将其计算结果与试验数据进行对比;同时,探讨了纤维体积分数、界面相的厚度和模量对复合材料纵向拉伸模量的影响.结果表明:纵向拉伸模量预测模型的计算值与试验值较吻合,其最大相对误差为11.2%;SFRR的纵向拉伸模量随着纤维体积分数的增加而增大;界面相模量对SFRR纵向拉伸模量的影响显著,当界面相模量小于基体模量时,SFRR的纵向拉伸模量随着界面相厚度的增加而减小;当界面相模量大于基体模量时,SFRR的纵向模量随着界面相厚度的增加而增大.
中图分类号:
张斌,顾伯勤,宇晓明. 短纤维增强橡胶密封复合材料纵向拉伸模量的预测方法[J]. 上海交通大学学报(自然版), 2015, 49(01): 96-100.
ZHANG Bin,GU Boqin,YU Xiaoming. Prediction Method for Longitudinal Tensile Modulus of Short-Fiber-Reinforced Rubber Sealing Composites[J]. Journal of Shanghai Jiaotong University, 2015, 49(01): 96-100.
[1]杜善义, 王晓宏, 张博明, 等. 单丝复合体系界面力学行为的表征[J]. 哈尔滨工业大学学报, 2010, 42(7): 10951099.DU Shanyi, WANG Xiaohong, ZHANG Boming, et al. Research progress in characterization of interface mechanical behavior of single fiber reinforced composites[J]. Journal of Harbin Institute of Technology, 2010, 42(7): 10951099.[2]俞亮, 程先华. 改性聚对苯撑苯并双噁唑纤维增强聚酰亚胺复合材料的摩擦磨损性能[J]. 上海交通大学学报, 2013, 47(9): 13411346.YU Liang, CHENG Xianhua. Tribological properties of modified polypphenylene benzobisthiasole fiber reinforced thermoplastic polyimide composite[J]. Journal of Shanghai Jiaotong University, 2013, 47(9): 13411346.[3]Romanowicz M. Progressive failure analysis of unidirectional fiberreinforced polymers with inhomogeneous interphase and randomly distributed fibers under transverse tensile loading[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(12): 18291838.[4]Venkateshwaran N, Elayaperumal A, Sathiya G K. Prediction of tensile properties of hybridnatural fiber composites[J]. Composites Part B: Engineering, 2012, 43(2): 793796.[5]Lee D J, Oh H, Song Y S, et al. Analysis of effective elastic modulus for multiphased hybrid composites[J]. Composites Science and Technology, 2012, 72(2): 278283.[6]Migneault S, Koubaa A, Erchiqui F, et al. Application of micromechanical models to tensile properties of woodplastic composites[J]. Wood Science and Technology, 2011, 45(3): 521532.[7]邹波, 卢子兴. 单向短纤维增强泡沫塑料力学性能分析[J]. 复合材料学报, 2008, 25(5): 98103.ZOU Bo, LU Zixing. Analysis for mechanical properties of unidirectional short fiber reinforced foam plastics[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 98103.[8]Sevostianov I, RodriguezRamos R, GuinovartDiaz R, et al. Connections between different models describing imperfect interfaces in periodic fiberreinforced composites[J]. International Journal of Solids and Structures, 2012, 49(13): 15181525.[9]Harper L T, Qian C, Turner T A, et al. Representative volume elements for discontinuous carbon fibre composites. Part 1. Boundary conditions[J]. Composites Science and Technology, 2012, 72(2): 225234.[10]Zhang B, Yang Z, Sun X, et al. A virtual experimental approach to estimate composite mechanical properties: Modeling with an explicit finite element method[J]. Computational Materials Science, 2010, 49(3): 645651.[11]Koyama S, Katano S, Saiki I, et al. A modification of the MoriTanaka estimate of average elastoplastic behavior of composites and polycrystals with interfacial debonding[J]. Mechanics of Materials, 2011, 43(10): 538555.[12]Mortazavi B, Baniassadi M, Bardon J, et al. Modeling of twophase random composite materials by finite element, MoriTanaka and strong contrast methods[J]. Composites Part B: Engineering, 2013, 45(1): 11171125.[13]于涛. 耐高温非石棉纤维橡胶基密封复合材料的研制[D]. 南京:南京工业大学机械与动力工程学院,2004.[14]GB/T 1447—2005, 纤维增强塑料拉伸性能试验方法[S].[15]Fisher F T, Brinson L C. Viscoelastic interphases in polymermatrix composites: Theoretical models and finiteelement analysis[J]. Composites Science and Technology, 2001, 61(5): 731748.[16]Dominkovics Z, Hári J, Kovács J, et al. Estimation of interphase thickness and properties in PP/layered silicate nanocomposites[J]. European Polymer Journal, 2011, 47(9): 17651774.[17]Nair S S, Hurley D C, Wang S, et al. Nanoscale characterization of interphase properties in maleated polypropylenetreated natural fiberreinforced polymer composites[J]. Polymer Engineering and Science, 2013, 53(4): 888896. |
[1] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[2] | 王磊, 陈哲, 王浩伟. 热处理对贮箱用原位自生铝基复合材料组织和性能的影响[J]. 空天防御, 2024, 7(6): 112-119. |
[3] | 陈雪, 朱龙宇, 薛钦洋, 王柯翔, 韩志林, 罗楚养. 防空导弹用树脂基复合材料研究进展[J]. 空天防御, 2024, 7(6): 76-95. |
[4] | 李志强, 许斌, 林楠, 王一冲, 范根莲, 谭占秋, 张荻. 高模量高强韧碳纳米管/铝合金复合材料研究进展[J]. 空天防御, 2024, 7(6): 29-37. |
[5] | 王进潇1, 程斌1, 2, 3, 向升1, 李思达1, 闫兴非4. 玻璃纤维复合材料胶栓混合节点在拉伸荷载下的静力与疲劳力学性能[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 817-830. |
[6] | 徐蓉霞, 高建雄, 朱鹏年, 吴志峯. 纤维增强复合材料层压板的疲劳寿命预测方法[J]. 上海交通大学学报, 2024, 58(3): 400-410. |
[7] | 侯晓帆, 孙久哲, 许嘉威, 胡承儒, 付玉彬. 无机酸掺杂聚苯胺/碳纤维复合海洋电场传感器电极[J]. 上海交通大学学报, 2024, 58(3): 391-399. |
[8] | 王贤锋, 邹凡, 刘畅, 安庆龙, 陈明. 锪窝圆角半径对CFRP/Al机械连接结构力学性能影响[J]. 上海交通大学学报, 2024, 58(3): 342-351. |
[9] | 程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241. |
[10] | 张晓玉, 周一梁, 冯 冲, 姚莉丽. 船舶复合材料连接技术应用现状[J]. 海洋工程装备与技术, 2024, 11(1): 145-150. |
[11] | 谢敏骐, 肖慈恩, 卞嘉鹏, 刘亚坤, 范寅, 陈秀华, 刘力博. 热塑性复合材料的电弧附着特征[J]. 上海交通大学学报, 2023, 57(9): 1214-1220. |
[12] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[13] | 李牧之, 鲍文倩, 王修成, 张一鸣, 袁昱超, 唐文勇. 复合材料护舷实船碰撞仿真方法及防护机理[J]. 上海交通大学学报, 2023, 57(6): 680-689. |
[14] | 刘阳1,2,王雅靖1,温大渭1,张全有1,王立1,安美文1,刘勇3. 基底刚度和拓扑结构对人体皮肤成纤维细胞形态的影响[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 495-. |
[15] | 刘 军, 张传旭, 曲 杰. 海底管道外腐蚀复合材料水下缠绕补强修复技术应用[J]. 海洋工程装备与技术, 2023, 10(4): 24-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||