上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (02): 251-256.
何仕玖,张晓晶,汪海
收稿日期:
2015-03-22
出版日期:
2016-02-29
发布日期:
2016-02-29
基金资助:
HE Shijiu,ZHANG Xiaojing,WANG Hai
Received:
2015-03-22
Online:
2016-02-29
Published:
2016-02-29
摘要: 摘要: 借鉴纤维增强金属层板桥接应力求解模型的理论和方法建立了胶接金属加筋板桥接力的求解模型,利用叠加原理将含裂纹胶接加筋板的Ⅰ型应力强度因子的求解分为2种情况,即利用Swift的位移协调方法求解破损筋条和普通筋条作用下基板的应力强度因子,以及利用桥接力模型求解桥接筋条作用下基板的应力强度因子.同时,利用有限元法和相关文献的实验结果验证桥接力模型和应力强度因子求解方法的有效性.结果表明,所建立的桥接力模型能够快速求解桥接力和胶接加筋板的Ⅰ型应力强度因子.
中图分类号:
何仕玖,张晓晶,汪海. 含裂纹胶接金属加筋板的Ⅰ型应力强度因子求解[J]. 上海交通大学学报(自然版), 2016, 50(02): 251-256.
HE Shijiu,ZHANG Xiaojing,WANG Hai. Analytical Methodology of Predicting Mode Ⅰ Stress Intensity Factor for Cracked Panels with Bonded Stiffener[J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 251-256.
[1]MENEGHIN I, MOLINARI G, IVETIC G, et al. Damage tolerance of adhesive bonded stiffened panels: experimental and analytical investigation of the fatigue crack propagation underneath the stringers[C]∥ ICAF 2011, Structural Integrity: Influence of Efficiency and Green Imperatives. Netherlands:Springer, 2011: 771783. [2]SWIFT T. Fracture analysis of adhesively bonded cracked panels[J]. Journal of Engineering Materials and Technology, 1978, 100(1): 1015. [3]ROSE L R F. Crack reinforcement by distributed springs[J]. Journal of the Mechanics and Physics of Solids, 1987, 35(4): 383405. [4]RANS C, MORINIRE F, RODI R, et al. Fatigue behavior of fiber/metal laminate panels containing internal carbon tear straps [J]. Journal of Aircraft, 2011, 48: 21222129. [5]ZHANG X, BOSCOLO M, FIGUEROAGORDON D, et al. Failsafe design of integral metallic aircraft structures reinforced by bonded crack retarders[J]. Engineering Fracture Mechanics, 2009, 76(1): 114133. [6]IRVING P E, ZHANG X, DOUCET J, et al. Life extension techniques for aircraft structures extending durability and promoting damage tolerance through bonded crack retarders [C]∥ ICAF 2011, Structural Integrity: Influence of Efficiency and Green Imperatives. Netherlands: Springer, 2011: 188205. [7]MENEGHIN I, PACCHIONE M, VERMEER P. Investigation on the design of bonded structures for increased damage tolerance[C]∥ ICAF 2009, Bridging the Gap between Theory and Operational Practice. Netherlands: Springer, 2009: 427447. 8]GUO Y J, WU X R. Bridging stress distribution in centercracked fiber reinforced metal laminates: Modeling and experiment[J]. Engineering Fracture Mechanics, 1999, 63: 147163. [9]WILSON G S, ALDERLIESTEN R C, BENEDICTUS R. A generalized solution to the crack bridging problem of fiber metal laminates[J]. Engineering Fracture Mechanics, 2013, 105: 6585. [10]RANS C, RODI R, ALDERLIESTEN R. Analytical prediction of Mode I stress intensity factors for cracked panels containing bonded stiffeners[J]. Engineering Fracture Mechanics, 2013, 97: 1229. [11]TADA H, PARIS P C, IRWIN G R. The analysis of cracks handbook[M]. New York: ASME Press, 2000. [12]ALDERLIESTEN R C. Damage tolerance of bonded aircraft structures[J]. International Journal of Fatigue, 2009, 31(6): 10241030. [13]WILSON G S. Fatigue crack prediction for generalized fiber metal laminates and hybrid materials[D]. Delft, Holland: Delft University of Technology, 2013. [14]PASCOE J A, RANS C, BENEDICTUS R. Characterizing fatigue delamination growth behavior using specimens with multiple delaminations: The effect of unequal delamination lengths [J]. Engineering Fracture Mechanics, 2013, 109: 150160. |
[1] | 刘昺轶,张继革,王德忠,李斌. 屏蔽式核主泵飞轮裂纹寿命评估[J]. 上海交通大学学报(自然版), 2019, 53(3): 315-320. |
[2] | 闫小顺1,2,黄小平1,梁园华3,李洛东3. 波浪载荷作用下海洋结构焊趾表面裂纹的应力强度因子计算[J]. 上海交通大学学报(自然版), 2016, 50(02): 288-293. |
[3] | 陈景杰a, 黄一a, 吴智敏b. 平行双裂纹应力强度因子的计算方法[J]. 上海交通大学学报(自然版), 2012, 46(08): 1263-1268. |
[4] | 周小平, 张永兴, 王建华, 哈秋聆. 压剪应力作用下复杂形状多裂纹应力强度因子[J]. 上海交通大学学报, 2003, 37(12): 1905-1909. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 864
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||