[1]HONG C H, RICKHEY F, JIN H L, et al. Evaluation of indentation fracture toughness for brittle materials based on the cohesive zone finite element method[J].Engineering Fracture Mechanics, 2015, 134: 304-316.
[2]ELICES M, GUINEA G V, GOMEZ J, et al.The cohesive zone model: Advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69(2): 137-163.
[3]JIN Z H, SUN C T. Cohesive zone modeling of interface fracture in elastic bimaterials[J]. Engineering Fracture Mechanics, 2005, 72(12): 1805-1817.
[4]JIN Z H, SUN C T. Cohesive fracture model based on necking[J]. International Journal of Fracture, 2005, 134(2): 91-108.
[5]YAN Y, SUMIGAWA T, SHANG F, et al. Threedimensional cohesive zone modeling on interface crack initiation from nanoscale stress concentration [J]. Journal of Solid Mechanics and Materials Engineering, 2011, 5: 117-127.
[6]GROGAN D M, BRADAIGH C M , LEEN S B. A combied XFEM and cohesive zone model for composite laminate microcracking and permeability [J]. Composite Structures, 2015, 120: 246-261.
[7]ORTIZ M, PANDOLFI A. Finitedeformation irreversible cohesive elements for threedimensional crackpropagation analysis[J].International Journal for Numerical Methods in Engineering, 1999, 44(9): 1267-1282.
[8]ROY Y A, DODDS R H . Simulation of ductile crack growth in thin aluminum panels using 3D surface cohesive elements[J].International Journal of Fracture,2001, 110(1): 21-45.
[9]SCHEIDER I, BROCKS W. The effect of the traction separation law on the results of cohesive zone crack propagation analyses[J]. Key Engineering Materials, 2003, 251/252(2): 313-318.
[10]WANG C Y,SUN C T. Energy variation during crack growth in cohesive fracture model[C] //Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering. Jyvaskyla, Finland: ECCOMAS, 2004: 1-20.
[11]RICE J R. Mathematical analysis in the mechanics of fracture [C]// Fracture An Advanced Treatise. New York: Academic Press, 1968: 191-311. |