上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (12): 1902-1906.

• 自动化技术、计算机技术 • 上一篇    下一篇

基于鲁棒稳定性的多速率采样控制系统设计

李夏雨1,金惠良1,钟庆昌2
  

  1. (1.上海交通大学 机械与动力工程学院,上海 200240;2.拉夫堡大学 航空和汽车工程系,英国 莱斯特郡 LE113TU)
     
  • 收稿日期:2013-01-21
  • 基金资助:

    国家自然科学基金资助项目(61074190)

Optimal Design of a Multirate Sampled-Data Control System Based on Robust Stability

LI Xiayu1,JIN Huiliang1,ZHONG Qingchang2
  

  1. (1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 2. Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire, LE113TU, UK)
  • Received:2013-01-21

摘要:

提出了基于鲁棒稳定性的多速率采样控制系统设计方法.对于具有给定补偿F的系统,首先拓展Lyapunov上限法得出鲁棒稳定性判定新条件.当系统具有边界不定的不确定性时,定义最大可承受边界为鲁棒稳定半径(Robust Stability Radius,RSR).通过对鲁棒稳定判定条件的分析,可将求解RSR的问题归结为求解一个复杂非线性方程,并利用数值计算方法求解该方程得到解析解.作为F的函数,通过一般优化方法即可实现F优化设计,使得系统RSR最大,而且在保证鲁棒稳定的同时可以承受不确定参数的变化范围最大.最后给出实例,说明了所提方法的可行性和有效性.
 
 

关键词: 鲁棒稳定性, 多速率采样控制系统, Lyapunov函数的上限

Abstract:

This paper concerned the optimal design of a multirate sampled-data control system based on robust stability. For a system with a given F, a new condition for robust stability test of uncertain system was developed by extending Lyapunov upper bound method. For a system with an unknown uncertainty bound, the robust stability radius (RSR) was defined. The RSR calculation problem could be converted to a mathematical process of solving an equation by analyzing the robust stability test condition proposed. The equation was solved using numerical mathematical methods to get the analytical solution as RSR. As a function of F, the F optimization design could be achieved by a general optimization method to get the biggest RSR. With this F, the system could remain stable with the uncertain parameters varying set being the largest. Finally, a simple example was provided to test the feasibility of the proposed method.
 

Key words: robust stability, multirate sampleddata control system, upper bound of Lyapunov function

中图分类号: