上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (12): 1828-1835.

• 自动化技术、计算机技术 • 上一篇    下一篇

采用核Rayleigh商二次相关滤波器的星图自适应杂波抑制

郭敬明1,2,何昕1,杨杰3,魏仲慧1
  

  1. (1. 中国科学院 长春光学精密机械与物理研究所, 长春 130033;2. 中国科学院大学, 北京 100039;3. 上海交通大学 图像处理与模式识别研究所, 上海 200240)
  • 收稿日期:2013-02-22 出版日期:2013-12-28 发布日期:2013-12-28
  • 基金资助:

    国家高技术研究发展计划(863)资助项目(2006AA703405F)

Star Image Adaptive Clutter Suppression Using Kernel Rayleigh Quotient Quadratic Correlation Filter

GUO Jingming1,2,HE Xin1,YANG Jie3,WEI Zhonghui1
  

  1. (1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China; 2.University of Chinese Academy of Science, Beijing 100039, China;3. Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2013-02-22 Online:2013-12-28 Published:2013-12-28

摘要:

为了实现星图中弱小星点目标的检测,提出了一种基于核Rayleigh二次相关滤波器(KRQQCF)的星图自适应杂波抑制方法.采用星图模拟方法随机产生视轴指向,根据二维高斯模型产生训练样本,提取改进的加速鲁棒特征(SURF),通过训练学习构建KRQQCF.为了快速检测目标,对待测图像首先用频域残差法检测星图中星点可能存在的显著性区域,然后提取该显著区域改进的5维SURF特征.最后,通过KRQQCF识别目标,有效抑制杂波及噪声,提高星图的信噪比.实验结果表明,该算法快速、有效、可靠.

 
 

关键词: 星图模拟, 加速鲁棒特征, 核Rayleigh商二次相关滤波器, 显著性

Abstract:

In order to detect small star point targets in star images, an adaptive clutter suppression algorithm based on kernel Rayleigh quotient quadratic correlation filter was proposed. The star image simulation method was adopted to generate optical axis point randomly, produce training samples according to the twodimensional Gaussian model,  extract improved speed-up robust features(SURF), and learn to build kernel Rayleigh quotient quadratic correlation filter(KRQQCF). In order to detect the target quickly, for the image to be detected, the spectral residual method was used to detect salient regions probably containing targets. Then the improved 5-dimension SURF feature of the salient regions was extracted. Finally, the target was recognized using KRQQCF, and  the clutter and noise were suppressed effectively which improved the SNR. Experimental results indicate that the proposed algorithm is fast, effective and robust.
 
 

Key words: star image simulation, speed-up robust feature (SURF), kernel Rayleigh quotient quadratic correlation filter (KRQQCF), saliency

中图分类号: