[1]Badjate S L, Dudul S V. Multi step ahead prediction of North and South hemisphere sun spots chaotic time series using focused time lagged recurrent neural network model[J]. WSEAS Transactions on Information Science and Applications, 2009, 6(4): 684693. [2]张冬青, 宁宣熙, 刘雪妮. 基于RBF神经网络的非线性时间序列在线预测[J]. 控制理论与应用, 2009, 26(2): 151155. Zhang D Q, Ning X X, Liu X N. Onling prediction of nonlinear time series using RBF neural networks[J]. Control Theory & Applications, 2009, 26(2): 151155. [3]Ma Q L, Zheng Q L, Peng H, et al. Multistepprediction of chaotic time series based on coevolutionary recurrent neural network[J]. Chinese Physics B, 2008, 17(2): 536542. [4]彭金柱, 王耀南, 王杰. 基于递归模糊神经网络的机器人鲁棒H∞跟踪控制[J]. 控制理论与应用, 2010, 27(9): 11451151. Peng J Z, Wang Y N, Wang J. Robust Hinfinity trackingcontrol for robotic system based on recurrent fuzzyneuralnetworks[J]. Control Theory & Applications, 2009, 6(4): 684693. [5]杨臻明, 岳继光, 王晓保, 李晓龙. 基于回归模型的城市轨道交通能耗预测[J]. 城市轨道交通研究, 2010, 13(12): 2225. Yang Z M, Yue J G, Wang X B, Li X L. Prediction of urban rail transit power consumption based on regression model[J]. Urban Mass Transit, 2010, 13(12):2225. [6]Zemouri R, Gouriveau R, Zerhouni N. Defining and applying prediction performance metrics on a recurrent NARX time series model[J]. Neurocomputing, 2010, 73(1315): 25062521. [7]Ludvig O, Nunes U. Novel Maximummargin Training Algorithms for Supervised Neural Networks[J]. IEEE Transactions on Neural Networks, 2010, 21(6): 972984. [8]Cai X D, Zhang N. Time series prediction with recurrent neural networks trained by a hybrid PSOEA algorithm[J]. Neurocomputing, 2007, 70(1315): 23422353. |