[1]Kennedy J, Eberhart R. Particle swarm optimization[C]∥IEEE International Conference on Neural Networks. Perth, Australia:IEEE, 1995: 19421948. [2]Parsopoulos K E, Vrahatis M N.Parameter selection and adaptation in unified particle swarm optimization[J]. Mathematical and Computer Modelling, 2007, 46(12): 198213. [3]Mendes R, Kennedy J, Neves J. The fully informed particle swarm: Simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204210. [4]Liang J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006,21(2): 281295. [5]Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization, systems[J].IEEE Transactions on Man, and Cybernetics, Part B: Cybernetics, 2009,39(6): 13621381. [6]Tang Y, Wang Z, Fang J. Feedback learning particle swarm optimization[J]. Applied Soft Computing, 2011,11(8): 47134725. [7]Zhang C L, Ordóez R. Robust and adaptive design of numerical optimizationbased extremum seeking control[J]. Automatica, 2009, 45(3): 634646. [8]Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J]. Information Processing Letters, 2007, 102(1) : 816. [9]Miroslav K, Wang H H. Stability of extremum seeking feedback for general nonlinear dynamic systems[J]. Automatica, 2000, 36(4): 595601. [10]Zhang C L, Ordóez R. Extremum seeking control based on numerical optimization and state regulation Part II: Robust and adaptive control design[C]∥2006 45th IEEE Conference on Decision and Control. San Diego, California: IEEE,2006, 44604465. [11]Chen H, Kong L. Swarm intelligencebased extremum seeking control[J]. Expert Systems with Applications, 2011, 38(12): 1485214860. |