上海交通大学学报(自然版) ›› 2012, Vol. 46 ›› Issue (09): 1522-1528.

• 数学 • 上一篇    下一篇

一类倒向随机微分方程对应的二阶偏微分方程的粘性解

冉启康a,b   

  1. (上海财经大学 a. 应用数学系;  b. 上海金融信息研究重点实验室, 上海  200433)    
  • 收稿日期:2011-04-21 出版日期:2012-09-28 发布日期:2012-09-28

BSDEs and Viscosity Solutions of the Associated System with Partial Integro-Differential Equations

 RAN  Qi-Kang-a, b   

  1. (a. Department of Applied  Mathematics; b. Shanghai Key Laboratory of Financial Information Technology, Shanghai  University  of Finance and  Economics,  Shanghai 200433, China)  
  • Received:2011-04-21 Online:2012-09-28 Published:2012-09-28

摘要: 摘要: 
讨论了一类带有Lévy过程的正倒向随机微分方程对应的二阶偏微分方程的粘性解. 在系数满足Lipschitz条件下,证明了粘性解的存在性及惟一性. 关键词: 
正倒向随机微分方程; Teugel鞅; 积分微分型二阶偏微分方程; 粘性解 中图分类号:  O 211.63
文献标志码:  A    

Abstract:  An existence result and A uniqueness result of a  backward stochastic  differential equation driven by Teugels martingales associated with a Lévy process were obtained.  It is also shown that under some- conditions the solution of the BSDE provides a unique viscosity solution of the associated system with partial integro-differential equations.  

Key words: forward-backward stochastic differential equations, Teugel’s , martingales, partial integro-differential equations, viscosity solutions