[1]Prakash Leo D G, Walsh M J, Maclachlan D, et al.
Crack growth micromechanisms in the IN718 alloy
under the combined influence of fatigue, creep and oxidation [J]. International Journal of Fatigue, 2009, 31 (1112):19661977. [2]Kawagoishi N, Chen Q, Yan N, et al. Fracture mechanism in fatigue of Nickelbased superalloy inconel 718 at elevated temperatures [J]. Journal of Solid Mechanics and Materials Engineering, 2007, 1 (6):734743. [3]侯善芹,许金泉. 基于疲劳特征长度概念的一种新疲劳理论[J]. 上海交通大学学报, 2010, 44 (10):14441449. HOU Shanqin, XU Jinquan. A new fatigue theory based on fatigue characteristic length[J]. Journal of Shanghai Jiaotong University, 2010, 44 (10): 14441449. [4]Li P, Lee P D, Maijer D M, et al. Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy [J]. Acta Materialia, 2009, 57 (12): 35393548. [5]Ferrié E, Buffière J Y, Ludwig W, et al. Fatigue crack propagation: In situ visualization using Xray microtomography and 3D simulation using the extended finite element method [J]. Acta Materialia, 2006, 54 (4): 11111122. [6]肖骥,PESSARD E,王敏,等. 7475铝合金板材的各向异性疲劳性能[J]. 上海交通大学学报,2011, 45 (11):16781683. XIAO Ji, PESSARD E, WANG Min, et al. The research of anisotropic fatigue behavior of 7475 aluminum alloy plate [J]. Journal of Shanghai Jiaotong University, 2011, 45 (11): 16781683. [7]汤鑫,曹腊梅,盖其东,等. K4169合金整体导向环精铸技术及热处理工艺研究[J]. 宇航材料工艺, 2007 (6): 8286. TANG Xin, CAO Lamei, GAI Qidong, et al. Investment casting technology and heat treatment process of K4169 superalloy integral nozzle ring [J]. Aerospace Materials and Technology, 2007 (6):8286. [8]刘孝敏. 工程材料的微细观结构和力学性能[M]. 合肥:中国科学技术大学出版社,2003:161167. [9]姚俊,郭建亭,袁超,等. 铸造镍基高温合金K52的低周疲劳行为[J]. 金属学报, 2005,41(4):357362. YAO Jun, GUO Jianting, YUAN Chao, et al. Low cycle fatigue behavior of cast nickel base superalloy K52[J]. Acta Metallurgica Sinica, 2005, 41 (4): 357362. |