上海交通大学学报(自然版) ›› 2012, Vol. 46 ›› Issue (08): 1297-1303.

• 交通运输 • 上一篇    下一篇

基于Pareto最优原理的混合动力汽车多目标优化

杨观赐1,2,李少波1,2,璩晶磊1,郭观七3,钟勇2   


  1. (1. 贵州大学 教育部现代制造技术重点实验室,贵阳 550003; 2. 中国科学院 成都计算机应用研究所,成都 610041; 3. 湖南理工学院 信息与通信工程学院, 湖南 岳阳 414006)  
  • 收稿日期:2011-10-28 出版日期:2012-08-31 发布日期:2012-08-31
  • 基金资助:

    教育部新世纪优秀人才支持计划(NCET090094),国家高技术研究发展计划(863)项目(2009AA043203),国家自然科学基金资助项目(60975049),贵阳市科技局科技计划项目(筑科合同[2012101]27号)

Multi-objective Optimization of Hybrid Electrical Vehicle Based on Pareto Optimality

YANG  Guan-Ci-1, 2 , LI  Shao-Bo-1, 2 , QU  Jing-Lei-1, GUO  Guan-Qi-3, ZHONG  Yong-2   

  1. (1. Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Guiyang 550003, China; 2. Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041, China; 3. College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China)  
  • Received:2011-10-28 Online:2012-08-31 Published:2012-08-31

摘要: 介绍了混合动力汽车(HEV)相关知识,建立了以最小化燃油消耗、HC+NOx排放量和CO排放量为目标的3目标优化模型,提出了基于Pareto最优原理的混合动力汽车多目标优化进化算法.该算法采用实数编码,以ADVISOR为HEV的仿真软件获得各候选方案目标值,基于Pareto支配性原理判定候选方案的优劣,并设计了可以调整待优化变量有效位的机制以保证优化所得的候选方案具有可实现性.针对不同车型的仿真实验结果表明,所提出的算法能够较好地解决混合动力汽车多目标优化问题,可以获得一组具有低燃油消耗与低污染物排放的Pareto最优解供决策者选择.   

关键词: 混合动力汽车, 带约束多目标优化, Pareto最优原理, 进化算法

Abstract: Some basic theories about hybrid electric vehicle (HEV) were introduced. The multiobjective optimal model for minimizing the fuel consumption, the sum emission of HC and NOx, and the CO emission was established. A multiobjective evolutionary algorithm for hybrid electrical vehicle based on Pareto optimality (HEVMOEA) was proposed. HEVMOEA uses real coding method to represent gene, and employs ADVISOR to simulate HEV to obtain the value of each objective of candidate solutions, and adopts the Pareto dominance principle to evaluate each solution. A method was put forward to specify the significant digits of variables to guarantee the realizability. A series of simulation results show that HEVMOEA is capable of solving the multiobjective optimization design of HEV, and is promising to provide a set of alternative Pareto optimal solutions characterized with better fuel economy and emission performance for designer.

Key words: hybrid electrical vehicle, constrained multiobjective optimization, Pareto optimality, evolutionary algorithm

中图分类号: