上海交通大学学报(自然版) ›› 2012, Vol. 46 ›› Issue (04): 624-629.
郑博1,2,张衡阳1,孙鹏1,黄国策1
收稿日期:
2011-08-12
出版日期:
2012-04-28
发布日期:
2012-04-28
基金资助:
国家自然科学基金资助项目(60972042),航空科学基金资助项目(20095596016),陕西省自然科学基金资助项目(2009JM8010;2010JQ8010)
ZHENG Bo-1, 2 , ZHANG Heng-Yang-1, SUN Peng-1, HUANG Guo-Ce-1
Received:
2011-08-12
Online:
2012-04-28
Published:
2012-04-28
摘要: 针对目前海洋空域中的航空自组网存在节点密度较小、连通概率较低的状况,提出了一种容延容断网络(DTN)的存储运载转发策略.从理论上分别推导出航空自组网中单、双向航路连通概率的数学表达式,并通过仿真实验验证了理论计算结果的正确性.进一步根据东亚和北美地区之间的实际航班数据仿真计算了北太平洋航路上航空自组网的连通概率.通过具体实例,分析了存储运载转发策略的有效性.结果表明,在航空自组网中,针对航班密度小的情况,采用该策略可以显著提高网络连通性. 关键词: 中图分类号: 文献标志码: A Abstract:
中图分类号:
郑博1, 2, 张衡阳1, 孙鹏1, 黄国策1. 航空自组网单、双向航路连通性研究[J]. 上海交通大学学报(自然版), 2012, 46(04): 624-629.
ZHENG Bo-1, 2 , ZHANG Heng-Yang-1, SUN Peng-1, HUANG Guo-Ce-1. Connectivity on One-and Two-Way Flight Routes in Aeronautical Ad hoc Networks[J]. Journal of Shanghai Jiaotong University, 2012, 46(04): 624-629.
[1]郑博, 张衡阳, 黄国策, 等. 航空自组网的现状与发展[J]. 电信科学, 2011, 27(5): 3847.ZHENG Bo, ZHANG Hengyang, HUANG Guoce, et al. Status and development of aeronautical ad hoc networks [J]. Telecommunications Science, 2011, 27(5): 3847.[2]CAO Yongtao, HE Chen, JIANG Lingge. A distributed virtual backbone formation for wireless Ad hoc and sensor networks [J]. Journal of Shanghai Jiaotong University (Science), 2007, E12(1): 2328.[3]辛玉梅, 麻志皓. 拓扑连通性的应用:公路网络中信息的存储方法[J]. 上海交通大学学报, 2008, 42(3): 489492.XIN Yumei, MA Zhihao. Application of topology connectedness: The storage structure of information in road network [J]. Journal of Shanghai Jiaotong University, 2008, 42(3): 489492.[4]Medina D, Hoffmann F, Ayaz S, et al. Feasibility of an aeronautical mobile Ad hoc network over the north atlantic corridor [C]// 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. San Francisco: IEEE, 2008: 109116.[5]Medina D, Hoffmann F, Ayaz S, et al. Topology characterization of high density airspace aeronautical Ad hoc networks [C]// 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems. Atlanta: IEEE, 2008: 295304.[6]Kingsbury R W. Mobile Ad hoc networks for oceanic aircraft communications [D]. USA: Massachusetts Institute of Technology, 2009.[7]Tu H D, Shimamoto S. A proposal of relaying data in aeronautical communication for oceanic flight routes employing mobile Adhoc network [C]// First Asian Conference on Intelligent Information and Database Systems. Vietnam: IEEE, 2009: 436441.[8]Besse F, Garcia F, Pirovano A. Wireless Ad hoc networks access for aeronautical communications [C]// 28th AIAA International Communications Satellite Systems Conference. Anaheim, CA: AIAA, 2010: 115.[9]Cheng M X, Zhao Yiyuan. Connectivity of Ad hoc networks for advanced air traffic management [J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(5): 225238.[10]My N T X, Miyanaga Y, Saivichit C. Connectivity analytical modelling for a single flight path Ad hoc aeronautical network [C]// International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology. Chiang Mai, Thailand: IEEE, 2010: 5155.[11]Li H, Yang B, Chen C L, et al. Connectivity of aeronautical Ad hoc networks [C]// IEEE Globecom 2010 Workshop on Wireless Networking for Unmanned Aerial Vehicles. Miami, Florida: IEEE, 2010: 17881792.[12]Keranen A, Ott J. DTN over aerial carriers [C]// 4th ACM Workshop on Challenged Networks. Beijing: ACM, 2009: 6776.[13]AlSiyabi M, Cruickshank H S, Sun Z. Delay/Disruption Tolerant Network architecture for aircrafts datalink on scheduled routes [J]. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST), 2010, 43(5): 235248.[14]郑博, 黄国策, 张衡阳, 等. 甚高频航空自组网的组网概率及连通性研究[J]. 西安交通大学学报, 2011, 45(8): 2429.ZHENG Bo, HUANG Guoce, ZHANG Hengyang, et al. Probability and connectivity of a very high frequency aeronautical Ad hoc network[J]. Journal of Xi’an Jiaotong University, 2011, 45(8): 2429. |
[1] | 刘双喜, 王一冲, 朱梦杰, 李勇, 闫斌斌. 小弹目速度比下拦截高超声速飞行器微分对策制导律研究[J]. 空天防御, 2022, 5(2): 49-57. |
[2] | 田若岑, 张庆振, 郭云鹤, 程林. 基于禁飞区规避的高超声速飞行器再入制导律设计[J]. 空天防御, 2022, 5(2): 65-74. |
[3] | 杨庶, 钱云霄, 杨婷. 高超声速飞行器线性变参数一体化式控制律设计[J]. 上海交通大学学报, 2022, 56(11): 1427-1437. |
[4] | 李臻, 许冰青, 李庆波, 鄢雄伟, 李博雅. 基于序列凸优化算法的飞行器轨迹规划[J]. 空天防御, 2021, 4(4): 50-56. |
[5] | 陈永信. 滑翔飞行器气动外形与轨迹一体化设计优化[J]. 空天防御, 2021, 4(3): 76-84. |
[6] | 王家琪, 郭建国, 郭宗易, 赵斌. 基于干扰观测器的高马赫数飞行器滑模控制[J]. 空天防御, 2021, 4(3): 85-91. |
[7] | 熊俊辉, 李克勇, 刘燚, 吉雨. 临近空间防御技术发展态势及突防策略[J]. 空天防御, 2021, 4(2): 82-. |
[8] | 蒋兴浩, 赵泽宇, 许可. 基于视觉的飞行器智能目标检测对抗攻击技术[J]. 空天防御, 2021, 4(1): 8-13. |
[9] | 王浩凝, 唐胜景, 郭杰, 黄繁. 带有动态攻角剖面的时间约束再入制导[J]. 空天防御, 2021, 4(1): 71-76. |
[10] | 崔乃刚, 蔡李根, 荣思远. 基于有向图切换IMM-CKF高速滑翔目标跟踪算法[J]. 空天防御, 2020, 3(3): 1-8. |
[11] | 刘昊东, 张庆振, 郭云鹤, 茅佳雯. 基于递推最小二乘法的变体飞行器模型参数在线辨识[J]. 空天防御, 2020, 3(3): 103-110. |
[12] | 张京娟, 雷昊东, 王学运, 秦峰. 基于飞行器三维组网测距信息的导航误差估计技术研究[J]. 空天防御, 2020, 3(3): 124-130. |
[13] | 李宗阳, 李煜, 程广益, 窦怡彬, 张晓宏. 考虑多场耦合效应的飞行器头罩热防护结构数值分析[J]. 空天防御, 2020, 3(2): 8-15. |
[14] | 胡济珠, 周俊, 李云云. 基于有机/无机复合材料的航天环境下高效热电转换技术研究 [J]. 空天防御, 2020, 3(2): 72-75. |
[15] | 万航, 徐胜利, 张庆振, 张迪. 基于动态逆的空天变体飞行器姿态控制[J]. 空天防御, 2019, 2(4): 25-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||