上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (10): 1558-1567.doi: 10.16183/j.cnki.jsjtu.2024.032

• 电子信息与电气工程 • 上一篇    下一篇

基于改进多目标进化算法的栅格地图路径规划

董德金1,2, 王常成3, 蔡云泽1,2()   

  1. 1 上海交通大学 自动化系, 上海 200240
    2 上海交通大学 系统控制与信息处理教育部重点实验室, 上海 200240
    3 航空工业沈阳飞机设计研究所, 沈阳 110035
  • 收稿日期:2024-01-22 修回日期:2024-03-01 接受日期:2024-03-07 出版日期:2025-10-28 发布日期:2025-10-24
  • 通讯作者: 蔡云泽,教授,博士生导师;E-mail:yzcai@sjtu.edu.cn.
  • 作者简介:董德金(2000—),硕士生,主要从事智能体路径规划研究.
  • 基金资助:
    航空科学基金(20220001057001)

An Improved Multi-Objective Evolutionary Algorithm for Grid Map Path Planning

DONG Dejin1,2, WANG Changcheng3, CAI Yunze1,2()   

  1. 1 Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
    2 Key Laboratory of System Control and Information Processing of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    3 Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
  • Received:2024-01-22 Revised:2024-03-01 Accepted:2024-03-07 Online:2025-10-28 Published:2025-10-24

摘要:

大范围栅格地图的多目标路径规划具有节点规模大、目标数量多的特征,现有算法难以平衡求解帕累托前沿(PF)的速度与质量,因此研究面向PF的高效优化算法具有重要的理论意义.首先,提出一种基于代价向量的加权图建模方法,并在此基础上研究适用于大规模问题的优化算法,相比传统图搜索算法显著降低了时间成本.其次,针对PF求解质量不足的问题,提出一种改进的多目标进化算法并包含新的初始化策略,以及基于角度和偏移密度的思想设计个体和环境选择策略.该改进措施综合考虑种群多样性和收敛性,从而提升了求解效率.最后,通过仿真实验对比,验证了所提改进算法的有效性.

关键词: 栅格地图, 多目标路径规划, 多目标进化算法, 帕累托前沿

Abstract:

Multi-objective path planning on large-scale grid maps is characterized by a large number of nodes and multiple targets. Existing algorithms struggle to balance the speed and quality of solving the Pareto front (PF). Therefore, studying efficient optimization algorithms based on the PF has certain theoretical significance. First, a weighted graph modeling method based on cost vector is proposed, and optimization algorithms for solving large-scale problems are studied accordingly, which significantly saves time and costs compared with graph search algorithms. Then, to address the issue of low quality of the PF solutions, an improved multi-objective evolutionary algorithm is proposed, which includes a new initialization strategy. Individual and environment selection strategies are designed based on the concepts of angle and shift-based density. These improvements take both population diversity and convergence into account, thereby improving the solving efficiency. Finally, comparative simulation experiments are conducted to verify the effectiveness of the improved algorithm.

Key words: grid map, multi-objective path planning, multi-objective evolutionary algorithm, Pareto front (PF)

中图分类号: