Application of Support Vector Machine to Ship Steering
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Abstract: System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response models of ship steering motion, including the first order linear, the first order nonlinear, the second order linear and the second order nonlinear models. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the different four categories are consistent with each other both analytically and numerically. The generalization of the identified model is verified by predicting different untrained manoeuvres. The simulations and comparisons demonstrate the validity of the proposed method.
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0
  Introduction

(The formal standard of ship manoeuvrability promulgated by the International Maritime Organization (IMO)[1]
 promotes the research on ship manoeuvrability. Mathematical model combined with computer simulation is an important method for ship manoeuvrability prediction at the stage of ship design[2]. System identification (SI) provides an effective way for modeling ship manoeuvring motion and subsequently the prediction of ship manoeuvrability, especially the SI with the advent of modern measurement equipments and advanced system identification techniques. Traditional system identification techniques for ship manoeuvring, such as the least squares (LS
) method[3], the Extended Kalman Filter (EKF)[4-5], the Maximum Likelihood (ML) [6]and the Recursive Prediction Error (RPE)[7] etc., have some shortcomings in practical application, mainly including initial values of variables, ill-condition solutions, and simultaneous drift of parameters. Recently, a frequency domain analysis method was proposed to the identification of hydrodynamic coefficients[8-9]
. However, this batch identification is restricted in the low frequency domain and the systems with weak nonlinearity. It is considered that several conditions are necessary for the high-precise identification of system parameters. The first one is the batch identification rather than the step iterative identification, since the batch one can prevent the dynamics cancellation effect. The second condition is the ability of avoiding the problem of dimension curse, which usually results in a very large condition number of the Gram matrix and subsequently ill-condition solutions. Finally, the time domain analysis is better than the frequency one while dealing with the nonlinear system. Fortunately, an advanced artificial intelligent technique, Support Vector Machine (SVM), was found to be satisfied the three above mentioned requirements. SVM learning strategy, based on the statistical learning theory, is a type of optimized model in which prediction error and model complexity can be simultaneously minimized[10]. It has found wide applications to system engineering during last decade and is considered to be a useful method in the field of system identification. It has two outstanding advantages. Firstly, this time domain batch algorithm is based on the criteria of structural risk minimization (SRM) and has good generalization ability. Secondly, the convex quadratic programming of SVM guarantees a global optimal solution. More details and mathematical descriptions about this machine learning method can be found in references[11-12].

This paper makes an effort to the parameter identification of the ship response model by using SVM. Four categories of the response model are considered. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the four categories are consistent with each other. The generalization of the identified model is verified by predicting different untrained manoeuvres.
1  Response Model of Ship Steering Motion

The response model of ship steering motion, usually named Nomoto model or K-T model, includes simple parameters such as K and T indices which can be expressed by the hydrodynamic derivatives[13-14]. It reflects the relationship between the system inputs and outputs of a dynamic ship steering system, which has been found wide applications in ship manoeuvring and control. In this paper, four categories of response model are considered.

The first order linear model is
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the first order nonlinear model is



[image: image2.wmf]3

11

(),

r

rrr

abgdd

++=+

&


                              (2)

the second order linear model is
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the second order nonlinear model is
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where 
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are manoeuvring indices; 
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 is the coefficient of linear term; 
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2  Identification of Manoeuvring Indices
2.1 Parameter Identification

A series of free-running model tests were conducted in the seakeeping basin of the State Key Laboratory of Ocean Engineering in SJTU to supply the input-output data for the identification. The length of the model is 
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the service speed is 
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, and the model scale is 1:50. Seven hundreds training samples are arbitrarily drawn from the data of the 
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 zigzag manoeuvre rather than that of turning circles in consideration of efficient excitation.
After discretization, Eqs.(1)—
(4) are deduced to the following expressions.

The first order linear model is
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the first order nonlinear model is
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the second order linear model is
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the second order nonlinear model is
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where
 k denotes the sampling time; 
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 are coefficients of model; the K, T indices in the continuous equation can be calculated after 
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 have been identified. SVM is then applied to the parameter identification. Linear kernel function is adopted and the regularization factor is taken 
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. The identification results are given as follows.

The parameters in the first order linear model are
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In the first order nonlinear model, they are
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In the second order linear model, they are
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And in the second order nonlinear model, they are
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Note that in the second order nonlinear model, the coefficient 
[image: image30.wmf]1

a

is set as one because of parameter identifiability, which is usually inevitable in the system identification of ship manoeuvring[4]. Nevertheless, from the viewpoint of system simulation or prediction, rather than from that of physical meanings, a few coefficients can be assumed as known beforehand. 
2.2 Predictions of Ship Manoeuvring Motion

Substituting the parameters into the equations of ship manoeuvring motion, i.e. Eqs.
(1)—(4), yields the overall histories of the yaw rates and headings. The predictions of ship manoeuvring motion in different cases are shown in Fig.1
.
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(a) The first order linear model             (b) The first order nonlinear model
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(c) The second order linear model        (d) The second order nonlinear model

SVM prediction,         Test data

Fig. 1  Predictions of 
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zigzag manoeuvre

The predicted overshoot angles and the overshoot angles in test are shown in Table 1
.

Table1
 Predicted overshoot angles and overshoot angles in test

	Model(test)
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	Test
	15.21
	22.27

	Linear model (1st)
	11.45
	16.04

	Linear model (2nd)
	11.37
	15.79

	Nonlinear model (1st)
	13.84
	16.40

	Nonlinear model (2nd)
	13.55
	16.30


where 
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is the first overshoot angle, 
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is the second overshoot angle.

As seen from the comparisons between predictions and actual test results, the identified model characterizes the dynamics of ship. Moreover, the nonlinear model approximates better, especially for prediction of the first overshoot angle. 

3  Model Comparisons and Generalization Verification
3.1 Model Comparisons

The four structures of the response models should be coincided mathematically because they reflect the same dynamics of the ship investigated. It can be confirmed by cross verification. 

Firstly, the comparison is conducted between the first order linear model and the nonlinear one, as shown in Table 2.

Table2 Parameter relationship between the first order linear and nonlinear models

	Model structure
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	Linear model (1st)
	-0.090
	-0.053

	Nonlinear model (1st)
	-0.092
	-0.062


Secondly, the comparison is between the first order linear model and second order linear model. The transfer function of the first order linear model can be obtained by Laplace transformation:
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For the second order linear model, it is:



[image: image46.wmf]3

2

12312

12

3

(1)

()

.

()

()(1)(1)

1

1

KTs

rsK

TTTsTTs

sTsTs

Ts

d

+

==

+-+

++

+

+

              (12)

If the high frequency characteristics of the ship dynamics can be ignored, i.e. 
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[13-14], the above expression can be deduced to:
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Obviously, the relationship of indices between two models aforementioned holds:
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The numerical comparisons are given in Table 3.

Table3 Parameter relationship between the first order linear and the second order linear models

	Model structure
	
[image: image51.wmf]K



 EMBED Equation.DSMT4  [image: image52.wmf]1

/s

-


	
[image: image53.wmf]T



 EMBED Equation.DSMT4  [image: image54.wmf]/s


	
[image: image55.wmf]r

d


[image: image56.wmf]/rad



	Linear model (1st)
	-0.43
	4.76
	-0.053

	Linear model (2nd)
	-0.44
	4.97
	-0.054


Finally, the second order linear model and the second order nonlinear model are compared by analogy, as shown in Table 4.

Table4 Parameter relationship between the second order linear and nonlinear models

	Model structure
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	Linear model (2nd)
	20.61
	-1.83
	-0.20
	-0.054

	Nonlinear model (2nd)
	20.92
	-1.87
	-0.28
	-0.062


From the comparison results, it is concluded that the four structures are mathematically consistent. 
3.2 Generalization Verification

For an artificial intelligent algorithm, the generalization verification is necessary[15]. It requires that the intelligent structure and parameters can well blindly predict the untrained samples. Because the different structures of response models are consistent inherently and the nonlinear model better characterizes the object in consideration. The first order nonlinear model is selected for the generalization verification. The verification samples are drawn from two different manoeuvres, including 
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zigzag manoeuvre and 
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starboard turning. Figure
 2 shows the results of prediction.
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SVM prediction,         Test data

Fig. 2  Prediction of 
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zigzag manoeuvre   
From the prediction results, it is concluded that the results of identified parameters are satisfactory. Notice that the approximation discrepancy of the second overshoot and thereafter in 
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zigzag manoeuvre results from the experimental errors rather than the SVM method itself.

4  Conclusion

Prediction of ship manoeuvrability at the stage of ship design provides an important tool to evaluate ship manoeuvrability. Computer simulation based on mathematical model of ship manoeuvring motion is an effective and practical way to predict the ship manoeuvrability. Accurately determining the hydrodynamic coefficients in the mathematical model is vital to the prediction accuracy. In this paper, system identification based on SVM effectively determines the manoeuvring indices in the response models of ship steering motion, with respect to four different structures. The simulation results of the predictions of manoeuvring motion and the check of generalization demonstrate the verification and validity of the proposed intelligent method. It may be extended to the hydrodynamic model such as MMG model or Abkowitz model, if one has more abundant input-output samples. More efforts will be devoted to the verification and validity of benchmark ships provided by the International Towing Tank Committee (ITTC) or full-scaled ships.
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