Highlights

    Please wait a minute...
    For Selected: Toggle Thumbnails
    Operation Parameters of Air-Cooled Fuel Cell Based on In-Situ Testing of Reaction State
    CHEN Minxue, QIU Diankai, PENG Linfa
    Journal of Shanghai Jiao Tong University    2024, 58 (3): 253-262.   DOI: 10.16183/j.cnki.jsjtu.2022.318
    Abstract204)   HTML22)    PDF(pc) (25048KB)(205)       Save

    The internal reaction state of air-cooled proton exchange membrane fuel cell (PEMFC) is the key factor affecting the output performance and stability of the cell. By developing an in-situ testing device for the reaction state of air-cooled fuel cell, the real-time measurement of cell temperature and current density is realized, and the influence mechanism of hydrogen outlet pulse interval, hydrogen inlet pressure and cathode wind speed on the performance of the cell is revealed. The results show that the distribution of temperature and current density in air-cooled cells is uneven. The temperature difference can reach 20 °C, and the current density difference reaches 400 mA/cm2 when the average current density is 500 mA/cm2. As the interval between pulses decreases and the inlet pressure increases, the performance of the hydrogen outlet area and the uniformity of the distribution increase, which can reduce the fluctuation of current density in the cells and improve output stability. If the cathode wind speed is too low, the temperature in central areas is high, and the temperature distribution uniformity is reduced. However, excessive wind speed causes the generating water to be blown away. The water content of the proton exchange membrane thus decreases, and the uniformity of the current density distribution deteriorates.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    SOH Online Estimation of Lithium-Ion Batteries Based on Fusion Health Factor and Integrated Extreme Learning Machine
    QU Keqing, DONG Hao, MAO Ling, ZHAO Jinbin, YANG Jianlin, LI Fen
    Journal of Shanghai Jiao Tong University    2024, 58 (3): 263-272.   DOI: 10.16183/j.cnki.jsjtu.2022.306
    Abstract46)   HTML8)    PDF(pc) (3259KB)(28)       Save

    Online estimation of the state of health (SOH) of lithium-ion batteries (LIB) is crucial for the security and stability operation of battery management systems. In order to overcome the problem such as long training time, large amount of computation, and complex debugging process of the LIB SOH estimation methods based on traditional data-driven, an LIB SOH estimation method based on fusion health factor (HF) and integrated extreme learning machine is proposed. The interval data with a high correlation with the SOH was found by analyzing the dQ/dV and dT/dV curves of the battery. Multi-dimensional HFs are extracted from the interval data, and the indirect HF are obtained by principal component analysis. The stochastic learning algorithm of extreme learning machine is used to establish the nonlinear mapping relationship between indirect HF and SOH. Considering the unstable output of a single model, an integrated extreme learning machine model is proposed. The unreliable output is eliminated by setting credibility evaluation rules for the estimation results, and the estimation accuracy of the model is improved. Finally, the method proposed in this paper is validated using the NASA LIB aging dataset and the LIB aging dataset of Oxford University. The results show that the average absolute percentage error of SOH estimation method proposed is less than 1%, and it has a high accuracy and reliability.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Interval Estimation of State of Health for Lithium Batteries Considering Different Charging Strategies
    ZHANG Xiaoyuan, ZHANG Jinhao, YANG Lixin
    Journal of Shanghai Jiao Tong University    2024, 58 (3): 273-284.   DOI: 10.16183/j.cnki.jsjtu.2022.347
    Abstract120)   HTML5)    PDF(pc) (3204KB)(131)       Save

    State of health (SOH) estimation of lithium-ion (Li-ion) batteries is of great importance for battery use, maintenance, management, and economic evaluation. However, the current SOH estimation methods for Li-ion batteries are mainly targeted at specific charging strategies by using deterministic estimation models, which cannot reflect uncertain information such as randomness and fuzziness in the battery degradation process. To this end, a method for estimating the SOH interval of Li-ion batteries applicable to different charging strategies is proposed, which extracts multiple feature parameters from the cyclic charging and discharging data of batteries with different charging strategies, and automatically selects the optimal combination of feature parameters for a specific charging strategy by using the cross-validation method. In addition, considering the limited number of cycles in the whole life cycle of Li-ion batteries as a small sample, support vector quantile regression (SVQR), which integrates the advantages of support vector regression and quantile regression, is proposed for the estimation of SOH interval of lithium-ion batteries. Li-ion battery charge/discharge cycle data with deep discharge degree is selected as the training set for offline training of the SVQR model, and the trained model is used for online estimation of the SOH of Li-ion batteries of different charging strategies. The proposed method is validated using three datasets with different charging strategies. The experimental results show that the proposed method is applicable to different charging strategies and the estimation results are better than those of quantile regression, quantile regression neural network and Gaussian process regression.

    Table and Figures | Reference | Related Articles | Metrics | Comments0