上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (4): 403-411.doi: 10.16183/j.cnki.jsjtu.2019.299
所属专题: 《上海交通大学学报》2021年“航空航天科学技术”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2019-10-18
出版日期:
2021-04-28
发布日期:
2021-04-30
作者简介:
许常悦(1981-),男,河南省兰考县人,副教授,主要从事计算流体力学、飞行器环境与生命保障工程研究. 电话(Tel.):025-84896099;E-mail: 基金资助:
XU Changyue(), ZHENG Jing, WANG Zhe, WANG Bin
Received:
2019-10-18
Online:
2021-04-28
Published:
2021-04-30
摘要:
采用尺度自适应模拟(SAS)方法研究了来流马赫数Ma为0.71、雷诺数Re为4×105的方柱跨声速绕流,并对分离剪切层和尾迹特性进行了深入分析.为了验证SAS方法的可靠性,将SAS结果与已有数值和实验结果进行了对比.在当前的跨声速流场中,剪切层中的对流马赫数约为0.6,这意味着Kelvin-Helmholtz不稳定性主导剪切层的初始阶段演化.在剪切层的初始阶段,可以看出扰动涡沿展向呈现滚筒状结构.剪切层外侧附近和方柱的回流区均出现倍频现象,这与剪切层中存在明显的涡合并有关.压力场的本征正交分解表明,方柱跨声速流场中的主导流动模态为反对称模态,这与尾迹中的涡脱落现象和剪切层引起的压缩波传播有关.
中图分类号:
许常悦, 郑静, 王哲, 王彬. 方柱跨声速流动中的剪切层和尾迹特性[J]. 上海交通大学学报, 2021, 55(4): 403-411.
XU Changyue, ZHENG Jing, WANG Zhe, WANG Bin. Shear Layer and Wake Characteristics of Square Cylinder in Transonic Flow[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 403-411.
[1] |
WILLIAMSON C K. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28(1):477-539.
doi: 10.1146/fluid.1996.28.issue-1 URL |
[2] |
MACHA J M. Drag of circular cylinders at transonic Mach numbers[J]. Journal of Aircraft, 1977, 14(6):605-607.
doi: 10.2514/3.58828 URL |
[3] | XU C Y, CHEN L W, LU X Y. Effect of Mach number on transonic flow past a circular cylinder[J]. Chinese Science Bulletin, 2009, 54(11):1886-1893. |
[4] |
MURAKAMI S, IIZUKA S, OOKA R. CFD analysis of turbulent flow past square cylinder using dynamic LES[J]. Journal of Fluids and Structures, 1999, 13(7/8):1097-1112.
doi: 10.1006/jfls.1999.0246 URL |
[5] | 邓小兵, 张涵信, 李沁. 三维方柱不可压缩绕流的大涡模拟计算[J]. 空气动力学学报, 2008, 26(2):167-172. |
DENG Xiaobing, ZHANG Hanxin, LI Qin. Large eddy simulation of 3-dimensional incompressible flow around a square cylinder[J]. Acta Aerodynamica Sinica, 2008, 26(2):167-172. | |
[6] | 唐鹏, 韩省思, 叶桃红, 等. 联合RANS/LES方法数值模拟方柱绕流[J]. 中国科学技术大学学报, 2010, 40(12):1287-1292. |
TANG Peng, HAN Xingsi, YE Taohong, et al. Hybrid RANS/LES simulation of flow past a square cy-linder[J]. Journal of University of Science and Technology of China, 2010, 40(12):1287-1292. | |
[7] |
MINGUEZ M, BRUN C, PASQUETTI R, et al. Experimental and high-order LES analysis of the flow in near-wall region of a square cylinder[J]. International Journal of Heat and Fluid Flow, 2011, 32(3):558-566.
doi: 10.1016/j.ijheatfluidflow.2011.03.009 URL |
[8] |
TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study[J]. Computers & Fluids, 2015, 123:87-98.
doi: 10.1016/j.compfluid.2015.09.013 URL |
[9] |
BAI W, MINGHAM C G, CAUSON D M, et al. Detached eddy simulation of turbulent flow around square and circular cylinders on Cartesian cut cells[J]. Ocean Engineering, 2016, 117:1-14.
doi: 10.1016/j.oceaneng.2016.03.009 URL |
[10] | 李真子, 林自城, 高志栋, 等. Reynolds数22000的孤立方柱绕流的大涡模拟[J]. 气体物理, 2017, 2(3):17-23. |
LI Zhenzi, LIN Zicheng, GAO Zhidong, et al. Large-eddy simulation of flow around isolated square cylinder at Reynolds number 22000[J]. Physics of Gases, 2017, 2(3):17-23. | |
[11] |
NAKAGAWA T. Vortex shedding behind a square cylinder in transonic flows[J]. Journal of Fluid Mechanics, 1987, 178:303-323.
doi: 10.1017/S002211208700123X URL |
[12] |
JACOBS G B, KOPRIVA D A, MASHAYEK F. Compressible subsonic particle-laden flow over a square cylinder[J]. Journal of Propulsion and Power, 2004, 20(2):353-359.
doi: 10.2514/1.9259 URL |
[13] |
LAYUKALLO T, NAKAMURA Y. Passive separation control on a square cylinder at transonic speed[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 45(150):236-242.
doi: 10.2322/tjsass.45.236 URL |
[14] |
XUE D W, CHEN Z H, JIANG X H. Investigations on the flow fields of hypersonic flow past the wall-mounted square cylinder with various heights[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 56(4):223-228.
doi: 10.2322/tjsass.56.223 URL |
[15] | 许常悦, 王从磊, 刘可. 绕方柱可压缩湍流的大涡模拟[C]//中国力学大会-2013会议论文集. 西安: 中国力学学会, 2013: CSTAM2013-A31-1140. |
XU Changyue, WANG Conglei, LIU Ke. Large-eddy simulation of the compressible flow turbulent flow past a square cylinder[C]//Conference proceedings of Chinese Congress of Theoretical and AppliedMechanics 2013. Xi'an: The Chinese Society of Theoretical and Applied Mechanics, 2013: CSTAM2013-A31-1140. | |
[16] |
SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
doi: 10.1007/s00162-006-0015-0 URL |
[17] |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
doi: 10.1016/j.ijheatfluidflow.2008.07.001 URL |
[18] | MENTER F, KUNTZ M, BENDER R. A scale-adaptive simulation model for turbulent flow predictions[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003:1-11. |
[19] | MENTER F, EGOROV Y. A scale adaptive simulation model using two-equation models[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2005: 1-13. |
[20] |
XU C Y, ZHOU T, WANG C L, et al. Applications of scale-adaptive simulation technique based on one-equation turbulence model[J]. Applied Mathematics and Mechanics, 2015, 36(1):121-130.
doi: 10.1007/s10483-015-1898-9 URL |
[21] |
XU C Y, ZHANG T, YU Y Y, et al. Effect of von Karman length scale in scale adaptive simulation app-roach on the prediction of supersonic turbulent flow[J]. Aerospace Science and Technology, 2019, 86:630-639.
doi: 10.1016/j.ast.2019.01.030 URL |
[22] |
XU C Y, CHEN L W, LU X Y. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665:238-273.
doi: 10.1017/S0022112010003927 URL |
[23] |
XU C Y, NI Z Q. Novel characteristics of wavy cylinder in supersonic turbulent flow[J]. European Journal of Mechanics-B/Fluids, 2018, 67:158-167.
doi: 10.1016/j.euromechflu.2017.09.006 URL |
[24] |
CHEN L W, XU C Y, LU X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643:97-126.
doi: 10.1017/S0022112009991960 URL |
[25] |
SIMON F, DECK S, GUILLEN P, et al. Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge[J]. Journal of Fluid Mechanics, 2007, 591:215-253.
doi: 10.1017/S0022112007008129 URL |
[26] |
WU J Z, LU X Y, ZHUANG L X. Integral force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576:265-286.
doi: 10.1017/S0022112006004551 URL |
[27] |
HAMMAN C W, KLEWICKI J C, KIRBY R M. On the Lamb vector divergence in Navier-Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610:261-284.
doi: 10.1017/S0022112008002760 URL |
[28] |
NA Y, MOIN P. The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation[J]. Journal of Fluid Mechanics, 1998, 377:347-373.
doi: 10.1017/S0022112098003218 URL |
[29] |
DONG Y F, WEI Z L, XU C. Transition of separated shear layer from order to chaos[J]. Physics of Fluids, 1997, 9(9):2580-2584.
doi: 10.1063/1.869374 URL |
[30] |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1):539-575.
doi: 10.1146/fluid.1993.25.issue-1 URL |
[31] | 许常悦, 王从磊, 孙建红. 圆柱跨声速绕流中的激波/湍流相互作用大涡模拟研究[J]. 空气动力学学报, 2012, 30(1):22-27. |
XU Changyue, WANG Conglei, SUN Jianhong. Large eddy simulation of shock-wave/turbulence interaction in the transonic flow over a circular cylinder[J]. Acta Aerodynamica Sinica, 2012, 30(1):22-27. |
[1] | 张绍广, 肖茂超, 张宇飞, 陈海昕. 细长旋成体大攻角非对称涡模拟的扰动引入方式研究[J]. 空天防御, 2022, 5(3): 10-16. |
[2] | 谭雪, 张辰, 徐文浩, 王福新, 文敏华. 近失速形态下冰脊分离非定常流的IDDES和模态分析[J]. 上海交通大学学报, 2021, 55(11): 1333-1342. |
[3] | 林海燕,向阳,张斌,刘洪. 压缩性对涡环物理特征及其传播速度的影响规律[J]. 上海交通大学学报, 2019, 53(9): 1030-1039. |
[4] | 李亮,解茂昭,贾明,刘宏升. 超临界射流模型的构建及验证[J]. 上海交通大学学报(自然版), 2018, 52(9): 1058-1064. |
[5] | 陈东阳1,ABBAS L K1,王国平1,芮筱亭1,陆卫杰2. 复合材料立管涡激振动数值计算[J]. 上海交通大学学报(自然版), 2017, 51(4): 495-. |
[6] | 刘强,谢伟,邱辽原,解学参. 桌面计算机上利用格子Boltzmann方法的GPU计算[J]. 上海交通大学学报(自然版), 2014, 48(09): 1329-1333. |
[7] | 李振华,吕兴才,黄震. 癸酸甲酯/醇类混合燃料以及乙醇燃料自点火试验[J]. 上海交通大学学报(自然版), 2013, 47(11): 1790-1794. |
[8] | 南北, 刘文佳, 李振华, 吕兴才, 黄震. 利用激波管测量丁醇着火延时的试验[J]. 上海交通大学学报(自然版), 2012, 46(03): 493-497. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||