上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1476-1482.doi: 10.16183/j.cnki.jsjtu.2020.391
所属专题: 《上海交通大学学报》2021年“金属学与金属工艺”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2020-11-20
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
李大永
E-mail:dyli@sjtu.edu.cn
作者简介:
杨 浩(1992-),男,安徽省合肥市人,博士生,从事晶体塑性与马氏体相变研究.
基金资助:
YANG Hao, WANG Huamiao, LI Dayong()
Received:
2020-11-20
Online:
2021-11-28
Published:
2021-12-03
Contact:
LI Dayong
E-mail:dyli@sjtu.edu.cn
摘要:
淬火配分QP980钢变形过程中存在马氏体相变,对材料的力学性能产生明显影响.通过电子背散射衍射方法表征了QP980钢变形前后的微观组织,基于马氏体相变晶体学唯象理论建立了考虑相变的弹-黏塑性自洽多晶体塑性模型,模拟了QP980钢在单向拉伸过程中的宏观流动应力和织构演化.材料初始包含铁素体(F)、马氏体和残余奥氏体(RA),各相均为轧制织构,变形后残余奥氏体含量明显减少,残余奥氏体的<111>丝织构、铁素体和马氏体的<110>丝织构在拉伸方向有明显增强.相变提高了材料的强度和加工硬化率,但对各相的织构演化影响很小.根据计算变形过程中应变和应力的分配情况,铁素体和回火马氏体对变形起主要作用,变形过程中新生马氏体的应力最大,成为断裂的潜在萌生点.
中图分类号:
杨浩, 汪华苗, 李大永. QP980钢拉伸过程的晶体塑性模拟[J]. 上海交通大学学报, 2021, 55(11): 1476-1482.
YANG Hao, WANG Huamiao, LI Dayong. Crystal Plasticity Modeling of Tension Process of QP980 Steel[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1476-1482.
[1] | MATLOCK D K, SPEER J G. Third generation of AHSS: Microstructure design concepts, microstructure and texture in steels[M]. London: Springer, 2009. |
[2] |
WANG L, SPEER J G. Quenching and partitioning steel heat treatment[J]. Metallography, Microstructure, and Analysis, 2013, 2(4):268-281.
doi: 10.1007/s13632-013-0082-8 URL |
[3] |
INAM A, IMTIAZ Y, HAFEEZ M A, et al. Effect of tempering time on microstructure, mechanical, and electrochemical properties of quenched-partitioned-tempered advanced high strength steel (AHSS)[J]. Materials Research Express, 2019, 6(12):126509.
doi: 10.1088/2053-1591/ab52b7 URL |
[4] |
LI Z, KIRAN R, HU J, et al. Analysis and design of a three-phase TRIP steel microstructure for enhanced fracture resistance[J]. International Journal of Fracture, 2020, 221(1):53-85.
doi: 10.1007/s10704-019-00405-6 URL |
[5] |
CHENG G, CHOI K S, HU X, et al. Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests[J]. Materials Science and Engineering: A, 2016, 652:384-395.
doi: 10.1016/j.msea.2015.11.072 URL |
[6] | SRIVASTAVA A, GHASSEMI-ARMAKI H, SUNG H, et al. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling[J]. Journal of the Mechanics and Phy-sics of Solids, 2015, 78:46-69. |
[7] |
HU X H, CHOI K S, SUN X, et al. Determining individual phase flow properties in a quench and partitioning steel with in situ high-energy X-ray diffraction and multiphase elasto-plastic self-consistent method[J]. Metallurgical and Materials Transactions A, 2016, 47(12):5733-5749.
doi: 10.1007/s11661-016-3373-2 URL |
[8] |
YANG H, WANG H M, YANG Z L, et al. In situ neutron diffraction and crystal plasticity analysis on Q&P1180 steel during plastic deformation[J]. Materials Science and Engineering: A, 2021, 802:140425.
doi: 10.1016/j.msea.2020.140425 URL |
[9] |
ZOU D Q, LI S H, HE J. Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science and Engineering: A, 2017, 680:54-63.
doi: 10.1016/j.msea.2016.10.083 URL |
[10] |
ZOU D, LI S, HE J, et al. The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process[J]. Materials Science and Engineering: A, 2018, 715:243-256.
doi: 10.1016/j.msea.2018.01.011 URL |
[11] |
HE J, HAN G F, LI S H, et al. To correlate the phase transformation and mechanical behavior of QP steel sheets[J]. International Journal of Mechanical Sciences, 2019, 152:198-210.
doi: 10.1016/j.ijmecsci.2019.01.003 URL |
[12] |
HU X H, SUN X, HECTOR L G, et al. Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach[J]. Acta Materialia, 2017, 132:230-244.
doi: 10.1016/j.actamat.2017.04.028 URL |
[13] |
MOHAMMED B, PARK T, POURBOGHRAT F, et al. Multiscale crystal plasticity modeling of multiphase advanced high strength steel[J]. International Journal of Solids and Structures, 2018, 151:57-75.
doi: 10.1016/j.ijsolstr.2017.05.007 URL |
[14] |
LEBENSOHN R A, TOMÉ C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9):2611-2624.
doi: 10.1016/0956-7151(93)90130-K URL |
[15] |
WANG H, WU P D, TOMÉ C N, et al. A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(4):594-612.
doi: 10.1016/j.jmps.2010.01.004 URL |
[16] |
TOME C, CANOVA G R, KOCKS U F, et al. The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals[J]. Acta Metallurgica, 1984, 32(10):1637-1653.
doi: 10.1016/0001-6160(84)90222-0 URL |
[17] | WECHSLER M S, LIEBERMAN D S, READ T A. On the theory of the formation of martensite[J]. Trans AIME, 1953, 197:1503-1515. |
[18] |
BOWLES J S, MACKENZIE J K. The crystallography of martensite transformations I[J]. Acta Metallurgica, 1954, 2(1):129-137.
doi: 10.1016/0001-6160(54)90102-9 URL |
[19] |
MACKENZIE J K, BOWLES J S. The crystallography of martensite transformations II[J]. Acta Metallurgica, 1954, 2(1):138-147.
doi: 10.1016/0001-6160(54)90103-0 URL |
[20] | WAYMAN C. Introduction to the crystallography of martensitic transformations[M]. London: Macmillan, 1964. |
[21] |
WANG H, JEONG Y, CLAUSEN B, et al. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension[J]. Materials Science and Engineering: A, 2016, 649:174-183.
doi: 10.1016/j.msea.2015.09.108 URL |
[22] | BHADESHIA H. Geometry of crystals[M]. London: University of Cambridge, 2001. |
[23] |
OLSON G B, COHEN M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6(4):791-795.
doi: 10.1007/BF02672301 URL |
[24] |
WOO W, EM V T, KIM E Y, et al. Stress-strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories[J]. Acta Materialia, 2012, 60(20):6972-6981.
doi: 10.1016/j.actamat.2012.08.054 URL |
[1] | 肖飞,金学军. 如何实现固态材料变形制冷?[J]. 上海交通大学学报, 2021, 55(Sup.1): 95-96. |
[2] | 邵吉吉1,张旭1,2,3,苗同臣1,尚福林3. 晶体塑性模型在微压缩实验误差分析中的应用[J]. 上海交通大学学报(自然版), 2018, 52(7): 860-866. |
[3] | 金明江,顾一嘉,金学军. Au-Cu-Al合金相变的内耗[J]. 上海交通大学学报(自然版), 2010, 44(05): 609-0612. |
[4] | 周正存,杨洪,严勇健. Ni-Al系合金中的逆马氏体相变[J]. 上海交通大学学报(自然版), 2010, 44(05): 628-0630. |
[5] | 韩利战,顾剑锋,潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢中的马氏体相变过程[J]. 上海交通大学学报(自然版), 2010, 44(01): 11-0015. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||