上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 958-967.doi: 10.16183/j.cnki.jsjtu.2019.237

所属专题: 《上海交通大学学报》2021年12期专题汇总专辑 《上海交通大学学报》2021年“海洋科学与工程”专题

• • 上一篇    下一篇

浅海水平变化波导下低频声能量传输特性

祝捍皓1,2,3(), 肖瑞4, 朱军4, 唐骏5   

  1. 1.浙江海洋大学 海洋科学与技术学院,浙江 舟山 316022
    2.浙江大学 浙江省海洋观测-成像试验区重点实验室,浙江 舟山 316021
    3.中国科学院声学研究所 声场声信息国家重点实验室,北京 100190
    4.浙江海洋大学 船舶与机电工程学院,浙江 舟山 316022
    5.挪威科技大学 声学组,挪威 特隆赫姆 7491
  • 收稿日期:2019-08-08 出版日期:2021-08-28 发布日期:2021-08-31
  • 作者简介:祝捍皓(1987-),男,浙江省舟山市人,副教授,研究方向为水声物理及海洋声场分析. 电话(Tel.):18905807669;E-mail: zhuhanhao@zjou.edu.cn.
  • 基金资助:
    国家自然科学基金(11704337);浙江省海洋观察-成像试验区重点实验室资助项目(OOIT2018OF05);声场声信息国家重点实验室开放课题研究基金(SKLA201907);海洋科学浙江省一流学科开放课题(20190001)

Propagation Characteristics of Low Frequency Sound Energy in Range-Dependent Shallow Water Waveguides

ZHU Hanhao1,2,3(), XIAO Rui4, ZHU Jun4, TANG Jun5   

  1. 1. Institute of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    2. Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan 316021, Zhejiang, China
    3. State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
    4. Institute of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    5. The Acoustic Group, Nowegian University of Science and Technology, Trondheim 7491, Norway
  • Received:2019-08-08 Online:2021-08-28 Published:2021-08-31

摘要:

针对浅海水平变化波导下的低频声能量传输问题,基于有限元方法,在柱坐标系下,以声能流为研究对象,结合具体仿真算例讨论了楔形海底、海底山及海沟三类典型复杂海底地形对声场能量传输特性的影响规律及机理.仿真结果表明,利用有限元方法可以准确计算各类水平变化地形情况下的声场分布.对于楔形上坡海底,海底倾斜角度越大,声能量向海底“泄漏”效应越强,水体层中声能量也相应衰减越快,而楔形下坡海底的影响则正好相反.小型海底山的存在会提高其上方声能量,但同时阻碍其后方声能量的接收.小型海沟对声传播的影响与声波的掠射角相关,仅当海沟水平夹角小于各阶简正波掠射角时才影响声能量的传输.

关键词: 浅海波导, 低频, 有限元方法, 声能流

Abstract:

In view of the low-frequency sound energy propagation in range-dependent waveguides in shallow water, in cylindrical coordinates, the sound energy flux is used as the study object based on the finite element method (FEM). The influence laws and the corresponding mechanisms of three types of complex seabed topographies, wedye-shaped seabed, seamount, and trench on sound energy propagation characteristics in sound field are discussed combined with specific simulation examples. The simulation results reveal that the FEM can accurately calculate sound field distribution in any seabed topography. For the up-sloping wedge-shaped seabed, the greater the inclination angle is, the stronger the sound energy leaks to the bottom, the more rapid the sound energy attenuates in water. But for the down-sloping wedge-shaped seabed the opposite is true. A small seamount enhances the sound energy above it, but hinders the reception of the sound energy behind it. The influence laws of small trenches are related to the grazing angle of sound energy. Only when the horizontal angle of the trench is smaller than the grazing angle of each normal mode in waveguide, would the sound energy be influenced in propagation.

Key words: shallow water waveguides, low frequency, finite element method (FEM), sound energy flux

中图分类号: